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ABSTRACT

This paper contains progress reports of NASA-sponsored

studies in the areas of space flight and guidance theory.

The studies are carried on by several universities and

industrial companies. This progress report covers the

period from July 18, 1963, to December 18, 1963. The

technical supervisor of the contracts is W. E. Miner,

Deputy Chief of the Astrodynamics and Guidance Theory

Division, Aero-Astrodynamics Laboratory, George C. Marshall

Space Flight Center.
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TECHNICAL MEMORANDUM X-53024

PEOUEESS--RE PORT- NO ._5-

on Studies in the Fields of

SPACE FLIGHT AND GUIDANCE THEORY
I

Sponsored by Aero-Astrodynamics Laboratory of

Marshall Space Flight Center

SUMMARY _n
This paper contains progress reports of NASA-s_ sored

studies in the areas of space flight and guidance theory.

The studies are carried on b_ several universities and

industrial, companies. This progress report covers the
period from July 18, 1963 to December 18, 1963. The

technical supervisor of the contracts is W. E. Miner,

Deputy Chief of the Astrodynamics and Guidance Theory

Division, Aero-Astrodynamics Laboratory, George C. Marshall

Space Flight Center.

INTRODUCTION

This report contains fifteen papers, the subject matter

of which lies in the areas of guidance and space flight theory.

These papers were written by investigators employed at agencies
under contract to Marshall Space Flight _enter.

This report is the fifth of the "Progress Reports" and

covers the period from July 18, 1963 to December 18, 1963.

Information given in Progress Reports 1 through 4 will not

be repeated here.

The agencies contributing and their fields of major
interest are:
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Field of Interest Agency

Calculus of Variations
Grumman Aircraft Engineering Corp.
Auburn University
Analytical Mechanics Associates
General Electric Company

Impulse Orbit Transfer North American Aviation, Inc.

Matrix Operations University of Kentucky

Large Computer University of North Carolina
Northeast Louisiana State College

Exploitation Georgia Institute of Technology

Stability

Low Thrust Trajectories

Martin Merrita Company
Minneapolis Honeywell Regulator Co.

i

Aeronutronics (Ford)

The objectives of this introduction are to review and

summarize the contributions of each agency.

The first paper by McGill and Kenneth of Grumman

Aircraft Engineering Corporation describes a computational
procedure for obtaining the solution to a nonlinear two-point

boundary value differential equations problem. The procedure

is based on a generalization of the Newton-Raphson technique

as a contraction mapping in a suitably defined metric space.

Thus, the solution is arrived at through a sequence of

solutions to related systems of linear differential equations
rather than the usual sequence of approximate solutions to

the nonlinear problem. Analytical estimates to convergence

properties are not given, but the numerical results given

indicate that convergence might be rapid in many cases if
some feel for the character of the solution furnishes a

reasonable arbitrary initial function. It appears that the
procedure may develop into an economical tool for isolating

extremal trajectories.

The second paper by Harmon and Shaw of Auburn University

develops a system of differential equations that defines
optimum reentry trajectories corresponding to a specified

hardware arrangement. The attitude of the reentry vehicle

is assumed to be controlled in one degree of freedom (yaw
angle of attack) by means of an offset center of gravity

and roll jets. The remaining degrees of freedom in attitude
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are constrained by relationships resulting from assumed

steady state solutions. The minimized variable is the time

integral of the total drag squared. The equations are

developed in some detail and presented with instructions in

a form amenable to coding on a high speed computer, so that
numerical studies could be carried out to determine how

much the minimized variable is increased and target acquisi-
tion ability is decreased by these hardware constraints.

Some work toward the analytical or direct derivation

of guidance functions is contained in the third paper by

Kelly of Analytical Mechanics Associates, Inc. The approach

is an application of perturbation theory to the Euler-Lagrange
equations with expansions truncated after the second order

terms. The theory is applied to a simple problem for

illustrating the theory and providing some information on

the contribution of second order terms compared to that of

first order terms. Some difficulties may be encountered
when the procedures as given are applied to our actual

problems. The on-board storage of the nominal optimum

trajectory is one, and the required closed form solution

to the differential equations is another. These difficulties

can probably be overcome. An approach which is theoretically
very similar to Dr. Kelly's has been carried out by R. Silber

of Southern lllinols University. The method is being coded

and evaluated in-house for optimum flight assuming a

spherical earth and produces a guidance function approxi-
mation in the usual polynomial form.

The fourth paper by Pines of Analytical Mechanics

Associates, Inc. suggests a possible basis for iterative

solutions to the two-point boundary value problem associated

with trajectory optimization by indirect methods. He proposes
to use the impulsive thrust solution with the constants of

the motion that he derives, and determine initial values of
the adjoint variables as limits of the values for the finite
thrust case as thrust increases without bound. This would

furnish the first guess in some iterative process for

solving a finite thrust case. The desired finite thrust

solution might be arrived at through some sequence of such

iterative solutions. However, for some missions it may be

nearly as difficult to solve the optimization problem with
impulsive thrust as it is to solve the original finite

thrust problem. Numerical evaluations of the method are

yet to be made.
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Mr. Cavoti of General Electric in the fifth paper
treats a simplified problem of optimum retrothrust in

an inverse square gravitational field. The principal
restrictions are a thrust direction always tangent to the

flight path, and end-conditions independent of range and

time. Under these conditions, he finds that the optimum
thrust magnitude program for bounded variable retrothrust

might consist of subarcs of minimum, variable intermediate,
or maximum thrust. A closed form solution is found for the

intermediate thrust case that implies a constant velocity
magnitude over such an arc. There is some question as to

whether these results can be helpful toward the solution
of the unrestricted problem.

The sixth paper by Gentry Lee of North American Aviation,

Inc. shows - for the rather restricted subfamily of transfer

orbits characterized as coplanar-elliptlcal and of equal
angular momentum - that there exists a specific family of

two impulse transfers that use no more impulse than a one
impulse transfer at the intersection of the two orbits.

The results of this study represent a step toward the

solution of the n-impulse transfer problem in which it has

been conjectured that an n-impulse transfer would require

less fuel than any transfer using fewer impulses.

The seventh paper is written by D. F. Bender of North

American Aviation, Inc. In this paper as in the companion

paper by Gentry Lee, a comparison is made between one impulse
and two impulse transfers between orbits of a rather

restricted family. This family consists of nearly tangent
coplanar elliptical orbits. It is found that over a narrow

range of orbit shapes for these shallowly intersecting

orbits, one impulse and optimum two impulse transfers require

practically identical total impulses.

The eighth paper is written by the University of

Kentucky Team. It presents a matrix method for representing
the general cubic

_ijk xi xj x k
i,j,k

and for finding the coefficients of this cubic subjected

to the transformation xi=Yi+_ i, i=l,2,...,n. This
procedure enables one to compute the coefficients of the

new cubic, in YiYjYk, in any order and to apply approxi-
mation techniques to the result.

4
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The ninth paper, written by Shigemichi Suzuki of the

University of North Carolina, describes new iterative

algorithms as alternatives to solving problem (a) as set
forth in Progress Report No. 4. Problem (a) is: given
a fixed form for the ratio of linear combinations of known

functions, coefficients are sought such that the maximum

deviation over a finite point set is a minimum (Tchebycheff).
The auxiliary functions are optimized under the constraints

given previously. These algorithms may provide more

effective means of solving the problem than those presented
in Progress Report No. 4. These methods will also be

evaluated by MSFC on the problem of generating steering and
time of cutoff functions.

The tenth paper, "Inverse Estimation" by G. W. Adkins,

also of the University of North Carolina, presents a novel

approach for empirically fitting guidance functions. The
procedure utilizes an algorithm which specifies the control

variables for a given sample of the response variables. In

this process of function approximation, the role of indepen-

dent and dependent variables are reversed. The procedure

has not been fully evaluated, but at this time it would
seem impractical for use.

The eleventh paper written by the group from Northeast

Louisiana State CollEge describes a technique for obtaining

the numerical values of a function which yields an error

in the sense of least squares that is equal to a specified

tolerance. In the notation of the paper the least squares
error is defined as

N

E = Ai¥iII
i:O

where the vectors _i and _i have n components corresponding
to the number of points used. Starting with the expression
for E, a method is developed for determining the n numerical

values of the components of the vector _N+l such that

II_- _I Ai _ill2 = 6 (a specified tolerance).
i=O

More effort is needed to determine a suitable functional

form for the vector _N+l or to find a use for the numerical
values of its components.



6

The twelfth paper, prepared by the group at Georgia

Institute of Technology, describes a method of obtaining

least squares estimates of multivariable polynomials. By

using a particular polynomial form, called a balanced

polynomial, the "step procedure" method yields least squares
estimates while reducing the order of the matrix to be

inverted. The method has not been applied but shows promise.

The thirteenth paper was written by D. L. Lukes of

Minneapolis-Honeywell Regulator Company. In this paper it

is assumed that some open loop (reference) trajectory and

the required control have been determined for a given

dynamical system. The problem of extending the control to

a neighborhood of the reference trajectory to obtain a
feedback control that will drive the system to the desired

final state is investigated. The technique used is based
on the construction of a Lyapunov function defined in some

neighborhood of the reference trajectory. This technique

differs from the classical linearization of the system

equations. Furthermore, stability is assured. It appears

that the same technique may be applied to an n-dimensional

system with a vector control function.

The fourteenth paper by H. Hermes of Martin Marietta
Company discusses "Controllability for Linear and Nonlinear

Systems." The idea of complete controllability for linear

control systems was first introduced and exploited by

R. E. Kalman, Y.C. Ho, and K. S. Narendra. In this paper

Dr. Hermes extends this concept to nonlinear systems with

the control appearing linearly. The first part of the
paper summarizes the work of the above authors. The second

part is concerned with the extension of the concept to

systems of the form

x(t) = g(t, (×, t)) + H(t, x(t)) u(t)

where g is an n-vector, H is an nxr matrix, and u is a
finite valued measurable control vector. An argument is

presented with regard to what should be meant by complete
controllability of the system stated above.

On the basis of the characteristics believed desirable

for this concept, a criterion is stated and it is shown to

satisfy the selected characteristics. How to extend the

concept to other nonlinear systems remains an open question.
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The last paper of this progress report concerns low
thrust trajectories. It is written by D. P. Johnson and
L. W. Stumpf of Aeronutronic Division of Ford Motor Company.
The paper presents a complete second-order solution for the
case in which the thrust vector makes an arbitrary but
constant thrust angle with the radius vector. The solution
presented is constrained to leave a circular orbit. Further
work should be done to relax this condition and also on
selecting optimum thrusting angles.

Dr. Mary Payne of Republic Aviation reworked some of
the material presented in her paper, "Application of the
Two Fixed Center Problem to Lunar Trajectories." This
work is presented under item 17 in the Table of Contents.

It will be noted again that the editors of this report
do not correct any of the papers and the authors are
responsible for their papers in detail.
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Summary

qD'l
This paper presents the development of an indirect method

for solving variational problems by means of an algorithm for

obtaining the solution to the associated nonlinear two-point

boundary value problem. The method departs from the usual in-

direct procedure of successively integrating the nonlinear equa-

tions and adjusting arbitrary initial conditions until the re-

maining boundary conditions are satisfied. Instead, an operator

is introduced which produces a sequence of sets of functions

which satisfy the boundary conditions but in general do not sat-

isfy the nonlinear system formed by the state equations and the

Euler-Lagrange equations. Under appropriate aonditions this se-

quence converges uniforlnly and rapidly (quadratically) to the

solution of the nonlinear boundary value problem.

The computational effectiveness of the algorithm is demon-

strated by three numerical examples. __
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INTRODUCTION

The mathematical theory used for the study of optimization

problems is the Calculus of Variations. Application of this

theory to meaningful models of physical situations generally re-

suits in a mathematical representation of the solution which re-

quires some numerical technique to effect solutions of use to

the engineer. Since the major computational device available

today is the high speed digital computer, e.g., the IBM 7094, an

a priori requirement for a numerical algorithm is that it be

systematically adaptable to high speed digital computation. For

the Calculus of Variations there are two general numerical ap-

proaches; the Direct Methods, and the Indirect Methods. The

direct methods proceed by solving a sequence of nonoptimal prob-

lems with the property that each successive set of solution °

functions yields an improved value for the functional being op-

timized. An example of such a procedure is the Method of Gradi-

ents which has been applied to a variety of problems with con-
siderable success. The indirect methods are concerned to find

by numerical means a set of functions which satisfy the neces-

sary conditions for an extremal, i.e., the Euler-Lagrange dif-

ferential equations. These necessary conditions and boundary

conditions form a nonlinear boundary value problem and it is

here that the numerical difficulty arises. The usual approach

to this problem is the systematic variation of arbitrarily cho-

sen initial conditions until the remaining boundary conditions

are met. This technique has proved largely unsuccessful owing

to increased dimensionality of the interesting problems and to

the sensitivity of boundary conditions to small changes in ini-

tial conditions. In lieu of this an algorithm has been devel-

oped which proceeds by solving a sequence of _inear boundary

value problems such that the sequence of solutions converges to

the solution of the nonlinear problem. Since the linear bound-

ary value problem is easily handled numerically the algorithm is

readily adaptable to high speed digital computation.

In what follows we shall discuss this approach in some de-

tail including a discussion of the numerical application. This

is followed by three numerical examples to illustrate the com-

putational effectiveness of the method.

J
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THE GENERALIZED NEWTON-RAPHSON OPERATOR

We are concerned with nonlinear operator equations of the

following form

BX= 0

where X is an element of an appropriate metric space S and B

is a nonlinear operator which maps S into itself.

For the case of the nonlinear two-point boundary value prob-

lems of interest herein the operator equation BX = 0 is given

by the following system of nonlinear differential equations and

boundary conditions

X - F(X,t) = 0 , t E [t0,t f]

x(1)(to)= x0(1) x (I) (tf) = x_ I)

where

X

F

x (to) = x0. x (tf) = xf

= _x(1),...,x(N) )

= i f(1),...,f (N)')

= f(i)cx(1) x (N) ._f(i) i = I,...,N .
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The metric space S is given by

• x(i)
s = Ix(t): (t)

with the metric

is continuous on
[t0,t f] , i = I,...,N 1 ,

N

P(XI'X2) = I

i=l

.£
t

XI,X 2 _ S .

We define an operator

arbitrary in S,

A on S by Xn+ I = AXn, n -- 0,i,...; X0

Xn+ I = J(X n,t) IX+I - Xnl + F(X n,t)

(1)(to) = x_l)X n x(1)n(tf) = xf(I)

xn (to) = x0 xn (tf) = xf

n = 0,1,2,... ,

where J(X,t) is the Jacobian matrix of partial derivatives of

the f(i) with respect to the x (j) i = i, ,v, j -- i. ,N
, • • • , • . •

Under appropriate conditions the sequence I..Xn_ converges

strongly to the solution X of the operator equation BX -- O,

x*)i.e., lim p(X n, = O, where X* is the solution of the
n-_ _

nonlinear boundary value problem. The metric # implies uniform



convergence for each of the component functions x_iJ(t)(_ of

x(t).

The operator A is called the Generalized Newton-Raphson

operator since it may be obtained from a direct generalization of

the Newton-Raphson sequence for finding roots of scalar equations.

For the scalar case the operator equation BX = 0 becomes

f (x) = 0

and the sequence defining A becomes

0 = f (Xn)[Xn+ I - x n] + f(Xn) n = 0,1,2, ....

The appropriate metric-space S is the scalar field with the

usual metric. As before, Xn+ 1 = AXn, n = 0,1,2,..., and x 0

is an approximate solution of f(x) = 0. As can be seen from the

scalar application the basic concept involved is geometric; a

curve is sequentially replaced by its tangent line, i.e., the

nonlinear problem is replaced by a sequence of linear problems.

Since there is a well developed structure for linear problems,

e.g., superposition for systems of linear differential equations,

the algorithm becomes computationally attractive. In addition,

since the linear two-point boundary value problem can be reduced

to repeated numerical integration of initial value problems, the

method is readily adapted to high speed automatic machine compu-

tation.

This algorithm was apparently first suggested for boundary

value problems by Hestenes (Ref. i) who called it "Differential

Variations," and later further developed by Bellman and Kalaba

(Ref. 2) who refer to the technique as "Quasilinearization."
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Kalaba gives a convergence proof (Ref. 2), based on monotonicity

and convexity arguments, for the case of a single second order

differential equation with two-point boundary conditions. A con-

vergence proof for N dimensional systems was given by McGill

and Kenneth (Ref. 3). The latter proof proceeds by establishing

sufficient conditions for the operator A to be a contraction of

a complete metric space into itself. The desired results then

follow from the Contraction Mapping Principle (Ref. 4). The

method is also mentioned by Kelley (Ref. 5) who remarks that com-

putational experience with the technique is lacking.

NUMERICAL APPLICATION

In this section we present a brief description of a numeri-

cal procedure for solving the linear system. This procedure,

with appropriate modifications, was used in obtaining the solu-

tions to the numerical examples included in this report.

At the n+l st stage of the iteration we have the linear

system

Xn+ I = J(Xn,t) fXn+ I - Xn] + F(Xn,t)

which is equivalent to

x = c(t)x(t) + D(t)

x --(Xl,...,XN)

xI(t0) = Xl0

XN(t0) = xN

i0

, t ¢ [t0,t f ]

xl(tf) = Xlf

xN_f(tf) = _f
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Generate by numerical integration a set _ -_X(_'-+i)(t) I, i -- i,...,_,

of solutions of the homogeneous system X = C(t)X(t) with ini-

tial conditions

(to) = (o,o,...,o,__+l 1,o,...,o)

x(_ 2)

(tO) -- (0,0,...,0,_2_+2 1,0,...,0)

X (N)(t0) = (0,0,...,0,...,0,1) .

Generate a particular solution X (P) (t) of the nonhomogeneous

system X = C(t)X(t) + D(t) with initial conditions

X (P)(t0) = (Xl0,X20,...,XN ,_,_,..-,K N) ,

where Ki, i = I,...,_, are arbitrary, e.g., _ = _= ... = _=0.

2

They should, however, following a suggestion by Richard Bellman,
N

be chosen to preserve numerical precision in solving the

simultaneous linear equations given below. The solution X(t)

of the nonhomogeneous system with the prescribed boundary condi-

tions is then given by

x(_ 1)

x(t) = C_l
(t) + c N X (-2)_ (t)+ ...+ CNX(N)(t) + X (P)(t) ,
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• eoe

• 2 •where the 2 constants CN_N_i i = I, are determined from
2"

the boundary conditions at t = tf by the solution of 2 simul-

taneous linear equations.

For the purpose of conserving rapid access storage and also

as a check on the solution of the linear system the solution X(t)

was not obtained from the linear combination given above. Rather

it was calculated by once more integrating the nonhomogeneous

system X = C(t)X(t) + D(t) with initial conditions

X(t0) = (Xl0'X20''"•XN_'CN_+l + _'CN_+2 + _•''',cN + _) "
2

The latter procedure requires the storage of only the final val-

ues of the vectors , i = i,...,_, and the final value

of X (P), the particular solution.

ORBITAL INTERCEPT EXAMPLE

The first example although not an optimization problem

serves to illustrate the application of the algorithm to a given

nonlinear boundary value problem.

The problem solved is that of determining the free fall path

which a space vehicle must follow in transferring from a speci-

fied position three hundred miles above the earth to another

specified position six hundred miles above the earth• with a

fixed transit time. The vehicle is assumed to be in coasting

flight and the perturbing effect of the moon is included. A

schematic diagram of the problem is shown below where X0(t ) =

\v__x0(t)'Yn(t)'z0(t)_' the starting vector, is of the simplest
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possible form, namely, the straight line joining the two points

in space, X*(t) is the solution vector.

The unit of length is taken to be the radius of the earth

and the principal gravitational constant is normalized to one.

This results in a time unit of 805.46 seconds.

Z

x(0) =
X

X(2) -- (0., 0.576000, 0.997661)

J

xe (t )
Y

(1.076000, 0., 0.)

Schematic Diagram

The sixth order nonlinear system and two point boundary con-

ditions which furnish the mathematical description of the problem

are given by
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; t E [0,2]

7- Z

x(O) -- 1.076000 x(2) = o.

y(o) --o.

z(O) --o.

y(2) : 0.576000

z(2) = 0.997661

i

r = ix2 + y2 + z2]=

!

x_4 2 2 2rM= [ + YM +zM]

1

=[(x M - x)2 + (YM . y)2 + (zM - z)2j,l=

For simplicity the lunar coordinates, XM' YM' ZM' are assumed

constant.

The time interval [0,2] was divided into i00 parts and the

necessary numerical integrations carried out by means of a high

speed digital computer (IBM 7094) to an accuracy of seven signifi-

cant figures. The results are exhibited in Table I where for

brevity only six points in time are shown. X0 (t) is the linear
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starting function; Xl(t ) is the first mapping; X2(t) is the
second mapping, etc. ; and X*(t) results from the integration of

the actual nonlinear equations with the initial velocities,

_(0) : 0.101637

y(0) : 0.472285

_(0) : 0.818022 ,

obtained from the final iterate.

The sequence {Xn] converged, within the accuracy of our

computations, in three iterations with:

p(_,X0) : 0.480116

P(X2,XI) = 0.133753

p(X3,X2) : 0.004375

P(X4,X3) : 0.000004 ,

where

P(Xn+I,X n) : maXlXn+ l(t) - Xn(t) I + maxlYn+ l(t) - Yn(t) l
t t

+ max Izn+ l(t) - Zn(t ) I
t

As a further check on the over-all accuracy the perturbing

force was set to zero and the final value of the magnitude of the

initial velocity was compared with that obtained by the closed

form solution for the two-body problem. Within the accuracy of

our computations these values were identical.
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Wenote that we have simply and rapidly produced the numeri-

cal solution to a simple orbit determination problem, viz., given

the position of a body at two distinct times, determine the time

varying orbital elements of the body in the presence of perturb-

ing forces. Solutions have also been produced even when the two

points are exactly 180 degrees apart. In this case the straight

line could not be used as a starting function since it is singu-

lar. However, a simple triangular path was sufficient to produce

the characteristic rapid convergence.

LUNAR DESCENT EXAMPLE _MAXIMUMRANGE

A very simple variational problem was chosen for the second

numerical example. This problem concerns the maximization of the

translational range of a lunar vehicle during descent to rest

from a hovering condition i000 ft above the lunar surface. The

time for the maneuver was fixed at 2.062 minutes.

For the purpose of generating this numerical example the

following simplifying assumptions were made:

Constant thrust acceleration

Uniform gravitational field

Analysis restricted to two dimensions.

The problem then is reduced to finding the thrust steering angle

time history which produces the maximum range in the given fixed

time.

The mathematical description of the problem is furnished by

the following Euler-Lagrange differential equations and boundary

conditions
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6 --T U = f(1)
t _ [t0,t f ]

--T
V

i - gM = f(2)

y --v = f(3)

U

= f(4)

F _

v y

=0
Y

= f(6)

u(t0) --u0 u(tf) --uf

v(t0) = v0 v(tf) = vf

Y(t0) = Y0 y(tf) = yf

The unit of length was chosen equal to the initial altitude

of i000 ft and the local gravitational constant and vehicle mass

were put equal to one. This resulted in the following normalized

data for the problem:
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u0 = 0.000

v 0 = 0.000

Yo--1.ooo

T = 5.000

gM = 1.000

uf = 0.000

vf = 0.000

yf = 0.000

to = 0.000

tf = 9.000

x 0 = 0.000

This normalization resulted in a time unit of 13.70 seconds.

crude starting function X0(t ) was chosen as follows:

u0 (t) -=0

v 0 (t) _ 0

Yf - Y0

Y0 (t) = Y0 + tf - to t

A

_Yo (t) _ e 3

_Uo(t) = c 1 - t

%Vo(t) = ¢2 - c3 t ,

where the three constants Cl, c2, and c 3 correspond to an ar-

bitrary estimate that the steering angle, measured from the local

horizontal, should be initially zero, equal to _/2 at

tf

t = _-, and slightly less than _ at t = tf.

The sequence IXn} for this case converged uniformly to an

accuracy of 5 significant figures in six iterations. The total
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computer time (IBM 7094) required for this problem was 18 seconds.

The desired final value of the range xf = i00, 200 ft was ob-

tained from

tf

xf = I u*(t)dt ,
J
to

where u (t) results from the integration of the nonlinear state

and Euler-Lagrange equations with a complete set of initial val-

ues taken from the final iterate. This final integration of the

nonlinear equations also served as an over-all check on the solu-

tion.

LOW THRUST ORBITAL TRANSFER EXAMPLE --MINIMUM TIME

The third and final example concerns the problem of minimiz-

ing the transfer time of a low thrust ion rocket between the or-

bits of Earth and Mars. This problem involves additional compli-

cations over the previous problems, the most significant of which

is the fact that the final value of the independent variable is

no longer fixed.

To simplify the problem as much as possible the rocket's

thrust level was assumed constant, and thus the single control

variable is the thrust direction. Further, the orbits of Earth

and Mars were assumed to be circular and coplanar, and the gravi-

tational attractions of the two planets on the vehicle were neg-

lected. The following system parameters for the low-thrust vehi-

cle were adopted from Ref. 5:
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Initial Mass, m0

Specific Impulse

Propellant Consumption Rate, _,

Thrust, T,

Thrust/Initial Weight

46.58 slugs

4700 sec

-7
-6.937 x i0

0. 127 Ib

-4
0.9 x I0

slugs/sec

The equations of motion are given by:

Radial Velocity

= f(1) = u

Radial Acceleration

2
f(2_., v k T sin

- r r2 +m0 + _t

Circumferential Acceleration

_} = f(3) = - uv + T.cos e

r _+ _t

where u and v are the radial and circumferential velocities

respectively; r is the radius; and e is the thrust direction

angle measured from the local horizontal. All the initial and

final values of the state variables were specified, and the quan-

tity to be minimized was tf, the final time. Since the method

as previously outlined required a fixed final time, the procedure

was altered to suit the minimum time problem. What follows is a

brief description of the modified procedure and a discussion of

the numerical results.
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The two point boundary value problem resulting from the

Euler-Lagrange equations is given by

--u = f(1) .

6
2

_-v__ k u _- f(2)
r - -_ + a(t) i

r _%2u + %2> _

¢ = _ uv + a(t) v ! -- f(3)
r 2

2

Ar = _-_ - 2 _> hu - u--vhr2 v = f(4)

U r r v

-- - 2 v _ + u _ = f(6)
V r u r v

where

a(t) -
T

m0+fa t •

and the boundary conditions are

t --0

r (0) --r0

u(0) = u0

v(0) = v0

t = tf

r (tf) = rf

u(tf) = uf

v(tf) = vf

(unspecified)
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This may be written as

where

and

x = F(X•t)

X ='(x(t) (6)_...jX )

F = (f(1)•...,f(6))

x(1)(t) --r(t)

x(4)(t) = _r(t)

• x(2)(t) = u(t) ,

x(5)(t) = _u(t)

x(3)(t) --v(t)

x (6) (t) = %v(t)

The method proceeds as before by solving the following sequence

of linear two point problems

Xn+ I -- J(Xn, t) [Xn+ I - Xn] + F(Xn, t n = 0,i,... ,

where J(X,t) is the Jacobian matrix of partial derivatives of

the f(i) with respect to the x (j) i = i, ,6 j = i ,6

A starting vector, X0(t ) and an estimated final time, if0 ,

are assumed and the sequence of linear boundary value problems is

solved numerically by the procedure outlined previously• with the

following boundary values:
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t=0

x(1)n (0) = rn(O ) = r 0

x (2)(0) = Un(0 ) --u0n

Xn(3)(0) = Vn(O) --vo

x (4)(o) = x (0) = 1
n r

n

t = tfk

(2) (tf) --Un(tf) = ufX n

Xn(3) (tf) = Vn(tf) = vf

n = 1,2, ....

Setting %r(0) = i accomplished the scaling of the multipliers.

The iteration proceeds until _(Xn+l,Xn) _< _ where

6

P(Xn+I'Xn) = Z max Ix(i)n+l- x(i) I

tE [0,tfk] ni=l

At this stage the final time, tfk, is adjusted automatically

according to the difference [rf - r(tfk) ] by a scalar applica-

tion of the Newton-Raphson procedure as follows

(tfk - tfk.l)

= + ) [rf - r(tfk ) ]
tfk+ I tfk r(tfk ) - r(tfk.l

The above iteration on X
n

tfk+l until p is again

until p < E where

now continues for the new final time

< 8. The over-all process proceeds
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7+ I - fkl= tfk+l

and b is a scaling factor. The corresponding iterate Xn+ I is

accepted as the solution to the minimum time problem, and a final

check is run by integrating the nonlinear Euler-Lagrange equa-

tions with a complete set of initial conditions taken from the

final iterate.

For the purpose of numerical precision the data for the

sample problem were normalized to obtain

r0 = 1.000

rf = i. 525

k : 1.000

v0 = 1.000

u0 = 0.000

vf = .8098

uf = 0.000

mo: 1.000

= - .O7487

T = .1405

This resulted in a time unit of 58.18 days. The starting vector

X0(t ) was chosen rather crudely as follows:

tf0 : 178.0 days, or 3.060 of our time units

rf - r0
x_I)(t) : ro(t) = ro + t

tf0

x0(2)(t) = u0(t) =-0

!

x0 :(r0-- f

x0(4) (t) : hr0(t) =-1.000
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•5200 for re[0, ½ ]

tf0 }

-.5000 for tc(½ tfo, tfo]

•3000 for re[0, ½ ]

_6) (t) _ (t) _ if0 }X ---- --L-

Vo 90. 000 for t¢ (½ ]
tf0, tf0

The final two starting functions _ (t) and _ (t) correspond
u0 v0

to a control angle e0(t ) which is constant at 60 ° above the

local horizontal _or the first half of the transit time, and con-

stant inward along the local vertical for the remaining half of

the transit time (see Fig. i).

The sequence [XnJ converged uniformly to an accuracy of 5

significant figures with 4 shifts of the final time in 13 total

iterations. The resultant minimum time was found to be 193.2

days; in agreement with results previously obtained by gradient

methods (Ref. 5). The total computer time (IBM 7094) required

was 36 seconds. Figure i illustrates the behavior of the control

angle program, where e0(t ) is the starting function, el(t )

through e4(t ) correspond to the 4 shifts of the final time tf,

and 8 (t) results from the integration of the nonlinear state

and Euler-Lagrange equations with the initial values taken from

the final iterate. The curves for e2(t), e3(t), and e4(t )

lie, within our plotting accuracy, on the solution curve e*(t);

except for the final segments as indicated on the figure. The

behavior of the metric p is shown in Fig. 2.
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We observe that for this particular example the approach

just described is systematic, simple to apply, and yields rapid

convergence from crude a priori starting functions.

By simple changes in the initial data, solutions were also

generated for Earth to Venus and Earth to Jupiter transfers. The

minimum times for these were 139.2 days and 478.2 days respec-

tively.

CONCLUSIONS

The numerical examples of this paper suggest that the Newton-

Raphson operator technique may be a useful computational method

for obtaining solutions to meaningful nonlinear boundary value

problems; and in particular for obtaining extremals for varia-

tional problems. It may be of particular use in generating fami-

lies of solutions for given variational problems with differing

values for the relevant parameters; for in this case the solution

for one set of parameters becomes the starting funtion for the

succeeding problem. This implies that the desired family may be

generated with reasonable computation time.

We note, however, certain reservations. Although it was

possible, for the included examples, to obtain crude a priori

starting functions sufficient to produce convergence, it is not

clear that this will remain true for other more complex problems.

If it should occur that starting functions sufficient for con-

vergence are not easily obtainable then one might consider a

hybrid approach, e.g., using a few steps of a gradient technique

to produce the necessary starting functions.
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It should also be noted that the solutions obtained by this

method are simply extremals and are not necessarily solutions of

the given maximization or minimization problem. In general,

further information must be brought to bear to decide whether or

not one has in fact produced a solution to the optimization prob-

lem. This may be in the form of physical reasoning based upon

properties of the particular system, or in the form of additional

mathematical tests, e.g., the Legendre-Clebsch condition, the

Weierstrass test, etc.

Finally, we observe that application of this algorithm to

problems with bounded control variables and/or state variable

constraints requires further modificatlon and extension of the

technique. A problem of bounded control is presently under study

and will be reported upon at a later date.
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TABLE I

X_ O.

x 0 1.076000

x 1 1.076000

x 2 1.076000

x 3 1.076000

x 4 1.076000

x* 1.076000

YO O.

Yl O.

Y2 O.

y3 O.

Y4 O.

y* O.

z0 O.

zI O.

z2 O.

z3 O.

z4 O.

z* O.

o.

0.4

O.860800

1.015153

1.048799

i.049839

i.049840

i.049840

0.115200

0.172927

0.184664

0.185100

0.185100

0.185100

0.199532

0.299519

0.319848

0.320602

0.320603

O.32060 3

0.4

0.8

0.645600

0. 845061

O. 900816

0. 902586

0.902587

0. 902587

O. 230400

0. 324202

0. 348339

0.349180

0. 349180

0. 349180

0. 399064

O. 561534

0.603341

0.604800

0.604798

i0.604798

I
I

_ 0.8

1.2

O. 430400

O. 610986

0.657001

0.658550

0.658551

0.658551

0.345600

0.447591

0.475158

0.476056

0.476057

0.476057

0.598597

0.775250

0.822998

0.824553

0.824555

0.824555

1.2

I

1.6

0.215200

0.323847

0.346085

0.346867

0.346868

0.346868

0.460800

0.537713

0.553667

0.554172

0.554173

0.554173

0.798129

0.931347

0.958980

0.959854

0.959855

0.959855

1.6

O,

0.

0.

0.

O.

O.

2.0

0.997661

0.997661

0.997661

0.997661

0.997661

0.997661

2.0

0.576000

0.576000

0.576000

0.576000

0.576000

0.576000
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The Maxim_n Principle of Pontryagin is used to find the point-to-

point re-entry trajectory of a space vehicle with an offset center of

gravity which will minimize the accumulated aerodynamic acceleration.

The mathematical model used incorporates the yaw angle of attack as

the control variable and eliminates undesirable oscillations due to

time variations of the rotation state variables. The set of charac-

teristic differential, equations is written with the first order

equations of motion as constraints. A computation procedure is

devised so that numerical solutions can be obtained on a digital

computer.
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LIST OF S_BOLS

G

m

M

t°

X

Xcp

z_

Ial

R
0

p

- Oy

SP

CP

SY

CY

SR

CR

Fa

_G

Frl = _ Fr2

Gravitational constant

Mass of the vehicle

Mass of the earth

Pl_mbline position vector

Missile system position vector

Aerod_u_mic system position vector

Position of the center of pressure _u the missile system

Roll jet positions in the missile system

Absolute w_lue of the pl_line position vector

Earth's radius

Pitch angle

Ya_ angle

Roll ar._le

Sine C_)p

Cosine _p

Sine _y

Cosine _y

f

Sine _r

Cosine @r

A_rodyr_mic force in the aerodyr_mic coordinate system

Aerodyr_mic force in the missile system

Gravitational force in the plumbline system

Roll forces in the missile system
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Aerodynamic moment (missile system)

Roll moment (missile system)

A Projected cross-sectional area of vehicle

q Dynamic pressure

f (CL) Vehicle configuration function

_Earth's angular velocity vector in plumbline system
E

V_hicle's-angular velocity vector in missile system

Kinetic energy

T_me

_R Relative velocity vector (Plumbline System)

_r Relative velocity vector (Aerodynamic System)

Vrm Relative velocity vector (Missile System)

Velocity vector for abnormal air movement in plumbline system

t
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I. INTRODUCTION

In "Progress Report No. 4 On Studies in the Fields of SpaceFlight

and GuidanceTheory" a paper entitled "Preliminary Investigation on

Six Dimensional OptimumRe-entry Trajectories" is presented by Douglas

Raneyand W. A. Shaw. Thefollowing paper is a continuation of that

study.

In this paper the optimumre-entry problem is studied as in

Progress Report No. 4 with the following exceptions :

(1) The yaw angle of attack is taken to be the single control

variable.

(2) Undesirable oscillations due to time variations of the

rotational state variables are eliminated.

(3) The MaximumPrinciple of Pontryagin is used rather than

the classical calculus of variations.
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II. STATEMENT OF THE PROBLEM

The problem herein presented is that @f determining from a given

class of allowable trajectories the best one yielding mission fulfill-

ment.

A space vehicle is assumed to initiate a re-entr7 into the earth's

atmosphere from some initial point above the earth's surface. The

influencing forces are the gravitational force of the earth and the

aerodynamic force created by atmospheric drag. The prediction of the

vehicle's performance is based on the assumption that a control system

is desired which will satisfy the following criteria:

I. Minimization of the accumulated g-forces on the

vehicle* s occupants.

2. Capability of making a point landing.

In mathematical form the first of these becomes the minimization

of the integral of the square of the total aerodynamic acceleration.

The second can be accomplished by the proper choice of the initial

auxiliary variables.

The performance problem thus formulated becomes the fixed end

point problem of Lagrange, where the integral to be minimized has as

constraints the first order equations of motion of the vehicle. The

boundary conditions are the initial and terminal values of position,

velocity, and roll angle. The magnitude of the yaw angle of attack

is taken as the controlvariable.
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Additional assumptions made are as follows:

i. The earth is a rotating sphere and the inverse

gravity law holds.

2. The mass of the vehicle is invariant with respect

to time.

3. The vehicle has an offset center of gravity which

is invariant with respect to the vehicle.

4. A pure couple is produced about the roll axis of

the vehicle by properly placed jets whose force

magnitudes are functions of the control variable.

5. The angular velocity and the angular acceleration

of the pitch and yaw angles are zero and the

acceleration of the roll angle is zero.

6. The c_nter of pressure is invariant with respect

to the center of gravity.
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III. COORDINATE SYSTEMS

Three rectangular cartesian coordinate systems will be used in

this paper. They are:

I. The pl_mbline space fixed coordinate system

2. The vehicle fixed missile system

3. The aerodynamic system.

A. PLUMBLINE SYSTEM

The plumbline system, Figure i, has its origin at the earth's

center with the Y axis parallel to the gravity gradient at the launch

point. The X axis is parallel to the earth fixed launch azimuth and

the Z axis is such as to form a right-handed system.

B. MISSILE SYSTEM

The missile system, Figure i, is defined with its origin at the

center of gravity of the vehicle and its Ym axis parallel to the

longitudinal axis of the vehicle. The xm and zm axes are taken so

as to form a right-handed system which is parallel to the plumbline

system at the launch point.

As the vehicle moves along its trajectory, the missile system

undergoes a displacement with respect to the plumbline system. In

flight the two coordinate systems are related through Eulerian angles

which are measured by a gimbal. The direction of the vehicle in

flight is defined by first rotating about the Z axis by ___p, then

around the new intermediate x axis by --_y, and finally around the
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axis by "_r" Thus, a position vector in the missile system mayYm

be written in terms of the position vector in the plumbline system as

or [_J 0 0 CP SP 0 X

CY S P CP

L-SR 0 -SY CY] 0 .

(l)

(la)

Expanding the above gives

= I CRCP_czsp+SRSYSP

L-SRCF + CRSYSP

CRSP - SRSYCP

CYCP

-SPSR - CRCPSY

sRc 

: cRc

where FAD7 is the transformation matrix and CR, for example, is used

denote cosine _r" The gimbal angles are illustrated in Figure 2to

where a right hand rotation is positive. The above definitions of

Eulerian angles are consistent with those used in computer decks compiled

by NASA. (4)

AERODYNAMIC SYSTEM

The aerodynamic system is defined with its origin at the center of

pressure of the vehicle and its Ya axis coincident with the relative

velocity vector. The xa and za axes are chosen to form a right hand

system.

Again, as the vehicle moves in flight, there will be a displace-

ment of the missile and aerodynamic coordinate systems relative to one

another. The direction of the relative velocity vector or the Ya axis

may be defined by the following rotations:
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i. Rotate the vehicle fixed reference frame about they m

axis such that the xm axis is brought to lie in the

plane which contains they m axis and the relative

velocity vector. Denote this angle as (I y-

. Rotate about the new z axis to bring the Ym axis

coincident with the relative velocity vector. Denote

this angle as CL . This angle is the so-called true

angle of attack.

A position vector may now be written in the aeromynamic system

in terms of the missile system as

or

-xa I_ _ o-0 1 0 i O | L_ j .dSC_y o cCl

(2)

(2a)

Xa = r (0., CC_y

LCCLy sCl

_y

...sc[,

cc1

0

',-ccl sCI Yl

JCCL y

(2b)

Figure 3 illustrates this system.
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IV. BASICMECHANICS

A. FORCES

Gravitational force. Since a spherical earth was assumed, Newton's

Law of Universal Gravitation which gives us an attractive force between

the earth and the vehicle is

_G = - _ (3)
IRI3

Aerodynamic force. The aerodynamic force, Figure 4, is a force

due to atmospheric drag. It acts through the center of pressure and

the direction of the force is always parallel and opposite to the

relative velocity vector. Written in the aerodynamic system the force

takes the following form:

" • (4)

In the missile system

or

[Aa]', (5)

O[O10-Fa SCL C CL

-Fa CCL

Fa SCL S eL
n

u

Y

YN

The ex_pression for the magnitude of Fa is taken to be the same as

that proposed by Miner (4), i.e., Fa _ Aqf (CL). A is the projected

cross-section area of the vehicle, q the dynamic pressure, and f ((I)

a factor which is determined by the vehicle's configuration.
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Since the aerodynamic force is dependent upon the relative

velocity or the flow or air over the missile, it is appropriate

at this time to discuss this flow. Miner's proposals are again

used wherehe assumes that the atmosphere in the large moves with

the earth. This gives at all times an air mass movement with respect

to the plu_bline system of

_x_ s -_ ,

where _" ms used to represent any abnormal air movex_ent desired. The

relative velocity vector in the plumbline system is then given by

• [ J (6)

or

VRX

VRy =

v I

• !

Y

Z

t

" 7

xI
I

÷ YI
I

_zJ

COEx wx

x coEy I - wy C6a)

In the missile system the relative velocity may be written as

w

Vz_ = I A, , VR
-- J

or in terms of the aerodynamic s

= IA T V ,Vrm _j r
where

-Vrm x q
I

I

Vrr'_VVrmz_

rstem variables

(7)

(8)

%
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B. MOMEETS

Aerodynamic moment. Since both the center of pressure and the

center of gravity are invariant with respect to the vehicle, a con-

stant vector in the missile system,my be used to relate the two.

Let Xcp be the missile fixed coordinates of the center of pressure

with respect to the center of gravity. The aerodynamic moment about

the center of gravity is then given by

or

Mere " Xcp x Faro (9)

Mam x Fa S(I SCL + Zcp Fa CCL

I MamYl " ]-xcp Fa S(I S(I y - Zcp Fa SCL CCL • (9a)

U_amz] _Xcp Fa CCL ÷ Ycp Fa SCL C_ y

Roll moment. Reference to Figure 5 will show the system of roll

_°jets _._ch is used to fulfill assumption 4 of the problem statement.

The jets are placed so that in the missile system

Frl = , located at _r =

0

Fr2 , = 0and located at -zr

J'Z r
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Yvv%

Xn, _

FIGURE 5.

ROLL FORCE SYSTEM
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The moment about the center of gravity caused by these forces is thus

given by

Hrm m 2 [_r x "_rl_ (Io)

since
w I

Frl - . Fr2 ,

or

(lOa)

The total moment about the center of gravity, in the missile system,

is then the sum of the aerodynamic and roll moments.

MTm " Mam + Mrm , (n)

or

_ r ycp Fa

MTm = l-Xcp Fa

[iXcp Fa

S(_S_y + Zcp Fa C_

sC4s_ y - Zcp Fa S_C(_y + 2F__ .
C(_+ Ycp Fa S(_ CCZy

(na)



56

V. EQUATIONS OF FDTION

From Chasle's theorem of mechanics, it is possible to interpret

the equations of motion of a rigid body as the sum of two independent

effects. One, the motion of the center of gravity with respect to the

inertial coordinate system and two, the motion of the rigid body around

its center of gravity. In general, this type of rigid body motion in

three-dimensional space requires six degrees of freedom since six state

variables are needed to fix the orientation of the body with respect to

the inertial frame. The state variables used in this problem are the

plumbline coordinates and the Eulerian angles.

A. TRANSLATION MOTION

As previously stated, only gravitational and aerodynamic forces

are considered. Using Newton's Second Law, the translational motion

of the center of gravity with respect to the plumbline system is given

by the following set of second order differential equations.

where

X - OM_ + T (12 )

x

X

By making the following change of variable, the second order equations

of translational motion may be reduced to first order.
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U = U -- = X

(13)

The first order translational equations thus become

EA]_u - - GM_ ÷ D Fam •

For convenience, the following definitions are made:

(lh)

g - - oM , (15)
IRI3

where

lAD]_ _= - Fa _ = F' _ (16)
m m

N _NI =_(CRCP + SRSPSY) (S(ICCLy) + CYSPCCI+(-SRCP + CRSYSP) (SCSSCLy _

I.

Thus, the translational equations may be written as

_" ! --

u - FaN ÷g_. (18)

B. ROTATIONAL MOTION

In writing the rotational equations of motion the energy method

or the Lagrangian form was found to be more convenient than the

Newtonian approach. For generalized coordinates of angular character,

such as the Eulerian set, the Lagrangian form becomes



58

d-K \'Yil O( i

i = p, y, r_

where M _ i is the moment associated with the _ i rotation and T is
!

the kinetic energy. Since an offset center of gravity was assumed, all

components of the inertia matrix are taken to be non-zero. The kinetic

energy for such a system is given by

(20)

where [_]is the inertia matrix

n u

Ixx -Ixy -Ixz

-Ixz -lyz Izz

• (21)

and 60 is the angular velocity vector of the vehicle written in the

missile fixed system. Using the expression above for the kinetic energy,

the Lagrangian equation takes the following form_

d
dt

Q._ = M (f)i.(22)

The 6_ .vector is obtained by transforming the angular velocity com-

ponents _ , _ and _ into the missile system from their
p _ y' f rT

positions in the directions of the axes of rotation. Since the gimbal

system used in this analysis measures pitch, yaw, and roll in that order,

turning from the space fixed plumbline system, the following transforma-

tions must be made. _ r is already in the missile system; _ y
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must be rotated through _ r' and

and then _ r"

p

In the missile system, the

must be rotated through_
Y

6_ vector thus becomes

1 __ moo CY .0 C -SY

(23)

or

Also

RCY -SR

Using these expressions in the rotational equations and rewriting in

(23a)

vector form, the Lagrange equations in pitch, yaw, and roll become:

and

B" By , - ,

r

(24)
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dt

dt

Now in order to comply with assu_,ption five of the problem statement,

the following definitions will be used throughout the remainder of

this paper.

= _ o (25) (26)

The first order rotational equations thus become

tE 3
where it is shown in appendix one that

[_]_3 - _ , _
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VI. FORMULATION OF THE VARIATIONAL PROBLEM

Before going into the mechanics of the variational problem, further

consideration must be given to the equations defining relative velocity

and to the constraint equations. These equations must be solved for a

particular set of variables so that a computational procedure can be

devised.

First to be considered will be the equations defining relative

the relativevelocity. Written in two different sets of variables,

velocity in the missile system takes the form

_rm = EAD_ VR = EAa_ T _r • (7 - 8)

The components of this vector yield the three equations (28) through

(30):

(cRcP ÷ sRsYsP)VRx + (cRsP- sRsYCP)v_ + sRcY V_z - vr sCL cCly (28)

-CYS? VRX + CYCP VRy + SY VRZ = Vr COL (29)

(-s_c?÷ cRsYsP)V_x - (sRsP+ cRcpsY)v_x ÷ c_cx VRZ - -Vr SCI SCL y. (30)

This set of equations is not an independent set mud thus cannot be solved

for three unkno_ms. A clue as to the dependency may be gotten by realizing

that the three equations are components of a vector and that only two angles

are necessary for locating a vector in three space. In order to solve the

problem, as stated in this analysis, the relative velocity equations are

used to obtain the two variables __p and T_Y"
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From a combination of equations (28) and (30), the expression for

p is found.

2_ _V_y_/_V_yc_ ÷v_c__ v__ _

and

_V_x÷v_

where J = CR Vrm x - SR Vrm z . (33)

(SP_ -7____ _gT (34)Thus "F_ = ARC TAN _-_ ; h'_ "
\ /

The solution thus obtained is not unique from a purely mathematical view;

however, if physical considerations which lead to consistency in the

problem are granted, then the solution is unique. (See Appendix II).

(29) is solved forEquation
y"

s_._ v_-_v_v_-_V_z÷_v_,-_ _5_

(v_ * K2)

and

CY /v2 _2 _v_ 2 2 2- V_K_ vr_ " *K)(Vrmy-VRz) , (36)

(V_ + K2)

where

K = CP VRy - SP VRX.

Thus the expression for
Y

y,

is

(37)

-_ @ @_y _-w" • (38)
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Again, as in solving for P , the uniqueness of the solution comes

from physical considerations. (See Appendix III. )

The components of the vector equation for rotational motion are

no_¢written and they are solved for the variables Fr, _ r' and (I •

The choice of variables to be solved for is again made with the compu-

tational procedure in mind. From the vector equation (27) the components

take the following form:
-2

= + Fa CCL (39)-lyz _ r Ycp Fa S (I S C5 Y Zcp

O = -Xcp Fa SCL S(l Y - Zcp Fa S (I CCL y

_Lxy_2r = -XcpF a C(I + YcpFa SCL C(l

+ 2 Fr zr (40)

y @

(_1.)

Solv_ug the three independent equations for three unknowns yields

= ARC TAN

ycp (lyzc(Iy * I_y sCLy

, (42)

Fr = Fa S(I (Xcp SCLy + Zcp C(ly) , (43)

2 zr

and
@

(_ = + . /Fa (Ycp S _ C(I y - Xcp Ca )•r - • (44)
V

Equations (34), (38), (42), (43), and (44) are thus the equations which,

along with the characteristic equations, form the problem solution.

As expressed in the pr_olem statement, it is desired to determine

from a given class of allowable trajectories the best one yielding mission

fulfillment. This is accomplished by finding _mong all admissible con-

trols (I y(t) which transfer the vehicle from Xo t°XT one for which the
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functional:

D =/ tT
to [DRAG] 2

dt (45)

takes on a minimumvalue. In _his analysis the word drag will be used

synonymously with aerodynamic acceleration. Thus from Equation (18),

and

"_ 2 iDRAGj = Fa ,a)2 )2• Fa N = (F N" N = (F'a ,

tT ')2O = (Fa dt (45); D = (F'a)2
t
O

(46)

(47)

The Pontryagin H function may now be written as follows:

H

whe re

. . _ •

I ii 7 r 8

k2 and _II " k5

ks

The k i(t), i = I ...8, are the auxiliary variables that are

incorporated in the same manner as the Lagrange multipliers in the

(48)

classical calculus of variations. Substituting into H from Equations

(18), (44), and (47) results in the following:

@

H = W X +
AI " [ ]_iI" Fa N + g _

, 2
s(l c_ y - Xcp C_+)%8(Fa) . (49)

Ixy
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The expressions for the auxiliary variables are obtained from the H

function and take the following form:

II g + ( _ II " _)

_ _/y -x CCI+ k.7 cp sG, cG, Y cp _(F_)-}

V zxy _

, 2
(50)

_+ k? /Ycp sol C_y

V
÷ "ks

l

- Xcp CCL _(Fa)_

@

>_7 = _H = F'a

= 0

It is implied from equation (53) that

6_

(51)

(52)

(53)

_8 m constar.t. The equation to

be solved for the control variable and a necessary condition for a

minimum of D are given below.
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!

c_H - .F ..( _ )

Y

_ Ycp

S'CL CCL -x
y cp

%

c(l o (54)

For a minimum of D,

2 H - F . _2_
2

c_C_2 a zz 8 (ly
Y

2 Ycp S C1 C(I - x C(I- ;, cp > o (55)
+ X7 _a.y %,

As shown above in the Pontryagin formulation, _ 8 " constant. This

constant will be chosen as _ 8 = +i in order that a minimization of

the H function will also be a minimization of D, i.e.,

for a minim_u D.

_2H >

2

Y

0

Equations (34), (38), and (42) - (44), are the constraint and defi-

nition equations which must be satisfied, and equations (50) through (54)

are the characteristic equations. The complete set of algebraic and

differential equations needed for the problem solution have thus been

found. The desired minimum drag re-entry pathwill thus be one which

satisfies all the aforementioned equations. A closed form solution to

this set of equations does not seem probable nor is the time spent in

searching for such a solution justifiable since numerical solutions via

digital computers can be achieved to almost any degree of accuracy.
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VII. COMPUTATIONAL SCHemE

Before the con_utational procedure is written, it is found conven-

ient to rewrite important equations in functional form. Reference to

these equations will be made throughout the computational scheme.

.L

F r = Fr (X, X, (I , (1 )
Y

r m r ¸

_p . _ (z,_, '_r, _, _'_

X = X

H . _(_,_',_,_,_, _._

@

8H = _H (Y, X, (I ,(I

8C_y 8(ly

y,_, _) - 0

Starting values

ro A

m _70

_M

R° )_'80 = i

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)
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XoI
I

Yo I

IZo]

w

Zro =

- !Xo = 0

Yo|

_Zo]
I m

°--

Xcp = Xcp

Ycp

Zcp
_. _

_IlO =

" kl1
k2o

.k.3

Atmospheric tables for p as a function of altitude.

Atmospheric tables for W as a function of position.

Aerodyu_mic tables for f(Ci ) as a function of Ci •

Preload Computation I

I. Choose (I yl = -ST

2. Compute the following, in order, using the positive sign in equation

(58), the Cl ylfrom step i, and starting values.

C! from equation (56)

Fr from equation

_ r from equation

_ from equation
1 P

y from equation
.._-

X from equation

(57)

(58)

(59)

(60)

(61)

H from equation (62)

8 H from equation

8by

(6h)
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. Choose

to _

CL y2 = Clyl + 50 and repeat step 2 using CL y2;

= (I y2 + 50 and repeat step 2 using CL y3; etc., up

y = 7r •

4. Repeat steps i - 3 using the negative sign in equation (58)

rather than the positive sign.

The print out from preload I should be tabulated as follows:

EQN. 58+ Cl y H EQN. 58-
CLy

H
Y

Plots of H versus (I and 8 H versus CL should give some
Y

Y _C_y

insight as to whether more than one solution exists to this probl_m.

Preload Computation II

5. UsLng starting values and the positive sign in equation (58),

iterate equation (64) for CL The results of preload I will
y"

aid in choosing the starting point for the iteration.

6. Compute _2 H

Y

, equation (55), using starting values and the

_y from step 5.
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e

@

Check for _ 2H > 0 . If the inequality holds, then a

minimum exists. Proceed to step 13 using the positive sign in

equation (58) for all further calculations. If the inequality

does not hold, proceed to step 8.

Check for _2H _ 0 . If this inequality holds, then go

2
@Ciy

back and take the negative sign in equation (58).

9. Using starting values and the negative sign in equation (58),

iterate equation (64) for CL y.

•82lO. Compute H , equation (55), using starting values and

the (I

Say
from step 9.

Y

ll. Check to assure that --62H > 0 .
Z

12. Proceed to step 13 using the negative sign in equation (58) for

all further calculations.

"N" Line Computation

13. Using starting values and the correct sign in equation (58),

as chosen by preload II, iterate equation (64) for (ly. Use

preload I to obtain'the approximate iteration range.
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14. Use the CL from step 13 along with starting values to compute
Y

the following:

(I from equation (56)

F r from equation (57)

from equation (58)r

p from equation (59)

y from equation (60)

@@
N

X from equation (61)

H from equation (62)

m

I from equation (63)
e

from equation (63)
II

_7 from equation (63)

15. Use some numerlcalintegration tecbmique to integrate the

following:

•. _-
X for X • for

r for _ r

16. Use integrated values from step 15 as starting values for

the n + i line.
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Vll!. CONCLUSION

The problem analyzed in this paper has application in the fields of
f

space flight and _guidance. In space missions such as the earth-moon

transit, the return to the earth's surface presents many problems. One

of these problems is how to re-enter the earth's atmosphere _ith a wingless

vehicle and make a point landing on the surface, at the same time mini-

mizing the factors which cause strain on the human crew.

In this paper, the elimination of the oscillations due to first and

second time derivatives of pitch and yaw and the second time derivative

of roll is significant since, it is believed, these cause unnecessary

strain on the vehicle's crew. This, in effect, replaces the dynamical

motion of the altitude loop by its instantaneous steady state solution.

The choice of C_y as the control variable seems physically realistic since

this angle lies in a plane perpendicular to the roll axis and any change

in this angle will be a roll of the vehicle about this axis. Such a

control should allow mmneuverability in three space.

In order to generate trajectories numerically, the initial auxiliary

variables must be known. In this paper no attempt has been made to find

these initial variables. It is assumed that they are known. If all

initial values are assumed known, then trajectories generated numerically

will satisfy the constraint and the characteristic equations. Satis-

faction of the characteristic equations is a necessary but not sufficient

condition for the existence of an optimum. A further necessary condition

for the existence of a minimum is easily obtained from the Maximum
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Principle, i.e., the condition that

_2H

_@y
_0

is necessary for a minimum of the integral D.
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APPENDIX I

DISCUSSION ON WHY [ C ] IS A NON-ZERO MATRIX

The matrix

-tq-'E4-'{E4'}
exists since it can be shown that the components of its product exist.

The inverse of [ C ] is developed below to show that it exists and is

non-zero.

C] -i = SROY(q=SR<- _ SY- 4_ CRC_)* SY(-_ SR_ ÷ _y SZ

- _ CRCY)- (_ SRO_* _y S_- % CRCY)

, cRcY(-Z_

+ zzz CRCY)

SRCY - I_ SY + Izz CRCY sR_,_-sY_ ÷ c_cYIr_

lsacY(l,xca * L_ Sa) + SY(-LarCR * Z_ SR) - CRCY(ZxzOR + Zzz S_)
I
I

I

, ½OR- _ s_
I
I
I
I

.,oR(z=oR* z= sR) . s_ (z= c_ + Z.z SR)

Thus from the definition

] .
it follows that [ C __ is a non-zero matrixe
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APPENDIX II

UNIQUENESS OF SOLUTION FOR , P

The expressions, for sine P and cosine 6_ P were fo_d by using

the quadratic forlaula. The radical thus carries the sign _+ . In order

for S2p + C2p = 1 the Plus sign must be chosen with the sine radical

and the _&nussign must be chosen with the cosine radical or vice versa•

Either combinationwill give a solution for _p . The u_que solution

is chosen from these two by considering the kay in which the coordinate

systems were defined. Cor_ider

SP = + .. - + VRy) (j2 )

(V x * VR2y)

where J = CR Vnrx - SR Vr__ .

= = 0 This J = 0Let r CL implies

Then,

SP = _+ VRX

2" •

and

VRy
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Now restrict 6
j p_ 4"77"

'" O'Y

-V.%X

7F

m_
_ne correct signs are thus,

SP I
- vRX

+ VRy

and CP =
+ VRy

_/V 2 2pj( + VRy
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APPEhDIXIII

OFSOLUTIONFOR;6yUNIQUENESS

The e_ressions for sine _y and cosine _y were found by using

the quadratic formula. The radical thus carries the sign _ . In order

for S2y + C2y = l, the plus sign must be chosen with the sine radical

and the minus sign must be chosen _ith the cosine radical or vice versa.

Either co_oination_ll _.ve a solution for _y. The unique solution

is chosen from these two by considering the way in which the coordir_te

systems wcrc defined.

Consider

SY = Vrmv VRZ - zmy

(v a + K2)

where K = CP V_ - SP VRX

!

Leo _c_P = 0 . This implies K = VRy

Let C_ = 90°. This implies Vn_y = 0 .

Then, SY = + VRy

VRZ + VRy

and tan __y = - VRy

VRZ
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Nowr_strict C_ y, -_ __(_y <- ";T "

0

-V_k-

_T

._. correct signs are thus,

Y

SY = - V_,y

+ VRy

and
+ VRZ

CY =

XY
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AN OPTIMAL GUIDANCE APPROXIMATION THEORY*

Henry J. Kelley**

Analytical Mechanics Associates, Inc.

SUMMARY /_

Synthesis of optimal guidance approximations is undertaken by means

of a perturbation theory approach. A simple example is treated analytically
m

and an approximation for the optimal control including linear and quadratic

feedback terms in the state deviations from an optimal reference trajectory

obtained. _ czf-_-A..

INTRODUCTION

The problem of guidance in the neighborhood of an optimized nominal

trajectory has previously been studied from slightly differing viewpoints by

Kelley (Ref. 1) and Breakwell and Bryson (Ref. 2) who have developed a

procedure for synthesizing linear feedback guidance approximations optimal

in the same sense as the nominal trajectory. The present paper deals with

synthesis of higher order approximations by means of perturbation theory

applied to the Euler-Lagrange equations, and presents a transparently simple

illustrative example in which quadratic feedback terms can be calculated

analytically.

This research was performed under Contract NAS 8-5314 with the Aero-
dynamics and Astrodynamics Division of NASA Marshall Space Flight
Center, Huntsville, Alabama.

** Vice-President
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PROPERTIES OF THE NOMINAL TRAJECTORY

The nominal trajectory is assumed to satisfy the equations of state

1 gi(xl'- -'Xn' Yl'--'YL' t)

i = 1, - -, n

and the Euler- Lagrange equations

Xi bH- bx. ' i = i,
1

-- -,n

bH

o , k

(1)

(2)

(3)

subject to boundary conditions at the initial and terminal points consisting

of appropriate specified conditions and transversality conditions. The

function

n

H = Zkigi

i=l

(4)

is the usual Hamiltonian and the _I are Lagrange multipliers.

It is assumed that the reference solution of (1), (2) and (3) which

represents the optimized nominal trajectory provides a minimum of a

function P(Xlf, - -, Xnf , tf) of the terminal values and is a normal non-

singular extremal without corners which satisfies the strengthened forms

of the Weierstrass and generalized Jacobi conditions. While some of these

assumptions are introduced merely for convenience, and can be relaxed,

others, such as the requirements of nonsingularity and nonconjugate end-

points, are essential to the development following.
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PERTURBA_ON THEORY

For simplicity of exposition, the system of differential equations

(2) and (3) will be written in the form

_.p = %(Zl,--,Z2n, t)

p = 1, - -, 2n

(5)

in which Zl,--,z n are identified as Xl,--,x n and Zn+l,--,Z2n as

)'1' - -' )_n' and the control variables Yl' - -' Yt have been presumed

eliminated by use of the Weierstrass condition. This will always be possible

within the framework of our assumptions since the strengthened Weierstrass

condition implies an unique minimum of H(y 1, - -, yt ). In practical applica-

tions it may be preferable to retain the control variables and eqs. (3), but

this will necessitate no essential change in the arguments to follow.

It is desired to develop an approximation to the family of solutions of

the system (5) in the vicinity of the reference solution corresponding to the

nominal trajectory. The parameters of the family will be the deviations of

the initial state variables from their reference initial values

m

Eq = Zq(to) - Zq(to) , q = I,- -,n (6)

and the family will be represented in terms of a Taylor series expansion

n b2 z

_ bz 1 _, ____p__Er+bE Es= z + --_ +Zp bEr r 2 b_r s
r=l r, s=l

p = 1,- -, 2n

(7)

Here, and in (6), the superscribed bar signifies the reference solution of (5).
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If (7) is introduced into the system of differential equations (5) and

the right members of (5) expanded in the Eq, the resulting expression

n bz n _2

d-t + bEr 2- BErbCs CrCs + ---
r=l r, s=l

2n n _bz 1 Zq
-_R Cr+ + L

bz her 2 _-------E
q=l q r=l q=l q r,s=l r s

2n b2 n n
1 f bz _z+ [2 .rIr , Er] +

q,u=l q u r=l r r=l r

p = 1, - -, 2n

(8)

may be regarded as an identityin the parameters _. This leads to a system

of differentialequations governing the partial derivatives which are the coef-

ficientsin (7):

bz n bf _z
d._.._ = ___2_ q p=l,--,2n

/, bz bEr 'dt _Er q=l q r= 1,--,n

2n b2b2 2n bf b2z f

d Zp=[._p_ q +[ P
dt 5ErbE s bz bErb¢ s _z bz

q=l q q,u=l q u
Lb¢ r aEs + aE s _-_r I

p = 1, - -, 2n

r= l,--,l_S

s = 1, - -, n

(9)

(IOA)

b2 2n b2
d zp_ _bf z= -.P-_q
dt 5E be /, bz _E bE

r r q=l q r r

2n b 2 f bz bz

p ___R ____u
+ bz bz ber be
q,u=l q u r

p = I,- -,2n

r --1,- -,n

(lOB)
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The process may be carried out to obtain differential equations for the partial

derivatives of any order occurring in (7) provided that the functions f are

smooth enough to permit the required differentiations.

If numerical procedures are intended, it will usually be desirable to

work with the partial derivative coefficients and the differential equations (9)

and (10), while, on the other hand, for analytical treatments it will often be

convenient to introduce the linear combinations

n bz

8Zp -- _ _--_P-¢r ' p=l,--,2n

r=-I r

n b2 z

6 2zp = --21_ b¢rb¢ sp- eros ' P = 1,--,2n
r, s=l

which satisfy the systems

2n bf

8_.p= _ _ 8Zq , p = 1,--,2n

q=l q

(11)

(12)

(13)

2n b2 f

2_ bf 1 _. P 5ZqSZ-__ +52Zp _ 62Zq 2 bz bz u

q=l q q,u=l q u

p = 1, - -, 2n

(14)

The boundary conditions applying at the terminal point of the trajectory

are of the general form

_q(Zl,--,Z2n , t)tf = 0 , q= 1,--,n+l
(15)

and these may similarlybe expanded as
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s=l S S

2n bf

+ fsSt + 82zs+ fs 82t + _s (Sz u+ fu

U=I U

8t
_-)St

2n b2
bf s 6._t2_ b_ i _ q

+ bt ,_._-- + _(St+ 52t) + 2 ,. bz bz (SZs +fs 5t)(Sz u

S,U=I S U

+
2n 32 _ b2

Z_.__.q_(SZs+fsSt)6 t + 1 q 8t 2 + ___}_
3z 3t 2 3t 2

s=l S

q= l,--,n+l

= 0 (16)

The symbols 5t and 52t appearing here are the first and second variations

in the terminal time, defined by

_btf8tf = _- Er
r=l r

(17)

n 32

= _.1 ___, tf62 tf 2 3_ 3_

r,s=l r s

_r Cs (18)

and the various partial derivatives appearing are evaluated at the terminal

point of the nominal trajectory at the nominal terminal time tf.

At the fixed initial time to, the initial conditions are given by (6), which,

with the introduction of (7), may be regarded as identities in the parameters _,

as also may the terminal conditions (16). Thus boundary conditions may be

derived for the system (9) and (10) in the partial derivatives, or, alternatively,

for the system (13) and (14) in the variations.
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COMPUTATIONAL CONSIDERATIONS

If only first order terms of the expansion are sought, as in Refs. 1 and 2,

the linearity of the system (9) or (13) may be emploited by the introduction of the

corresponding adjoint system, by means of which the expansion coefficients may

be calculated economically over a range of "initial" times extending from the

initial to the terminal time of the nominal trajectory. No such economy measure

is available, however, in the computation of second and higher order terms, for

while the system (10) or (14) is linear, the nonhomogeneous terms are quadratic

functions of the first order solution, and hence the systems (9) and (10), or (13)

and (14), viewed as a simultaneous system, are nonlinear, and the adjoint

device is inapplicable.

ANALYTICAL TREATMENT OF AN EXAMPLE: ZERMELO'S PROBLEM

The simple problem for which the linear feedback terms were calculated

in Ref. 1 affords the possibility of obtaining the quadratic feedback terms

analytically as well. A particle moves with constant speed V relative to a

medium which itself is in motion with velocity components u and v, presumed

constant. The equations of state are

= V sin 7 + u

= VCOSy +V

The steering angle 7 is the control variable of the problem, and the minimum

time path from a specified initial point to a fixed destination point (z*, x*) is

sought. The extremals are straight lines and collision guidance is optimal.

(19)

(20)

The Euler-Lagrange equations are

il= 0 (21)
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(22)

)'1cos7 - _'2sin7 = 0 (23)

and the optimal steering angle 7 is determined by

- kl - >'2

sin7 = 2 1/2 ' cos 7 = 2 1/2

(X12+),2) (X12+k2)

(24)

The transversality condition

H(t_)= - 1 (25)

applies at the terminal point.

The numerical data for the example and for the path chosen as a nominal

trajectOry are

¢

m

z ° 0 zf z* 1 to = 0

-Xo=O _f= x,--2 =2
V = 1 u = 1/2 v = 0

X2 1 -i_1 = o = --_ --

sin7 = 0 cosy = 1

(26)

The equations for the first order guidance solution are

o;. = v cos_- 87

8:_ = -Vsin7 87

6X1= 0

8X2= 0

(27)

(28)

(29)

(30)
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6X 1 cos7 - 8X 2 sin_- - (X 1 sinT"+ k2

These are subject to boundary conditions

cos_-)Sy = 0 (31)

6z(to) =

6x(to) =

Z(to)- Z(to)

X(to) - X(to)

(32)

(33)

at the initial point and

6z (if)+ (V sinyf + u)Stf = 0

+(v +v)% =o

(34)

(35)

(36)

at the terminal point. Equations (34), (35) and (36) are obtained from the

vanishing of the first order terms of the general expression (16).

The equations for the second order guidance solution are

52z : Vc0s7-827 - V sin_ 8y2
2

6y 2
62 x = - v sin{ 52_ - v cos { -_-

(37)

(38)

52 X1 = 0

52_.2 = 0

62X1 COST - 62X2 siny - (X 1 sin_+ _ 0os_-)52__

_ 572
+ (-k 1 cosT-+ k2 siny) T = 0

(39)

(40)

(41)
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The_e are subject tc boundary conditions

62 z (t o) = 0

62 x(t o) = 0

(42)

(43)

at the initial point and

82z(tf)+VcosTfST(t'f)Stf+(VsinTf+u)82tf.

82x(tf)-Vsin_f_T(tf)Stf+(Vcos_f+v)52tf

= 0

= 0

V c_x_(_)oo_5 _x_(_)_.5_ = 0

(44)

(45)

(46)

at the terminal point. Equations (44), (45) and (46) are obtained from the

vanishing of the second order terms of the general expression (16).

The first order guidance solution is that given in Ref. 1:

8z uSx
- ÷ O

_v = v(E °to ) v2(_f _ to )

_X
O

otf = - _V

(47)

(48)

in which the simplifications sin_-= 0, cos _' = 1, v = 0 of the specific

examples have been introduced. The corresponding second order results are

6x 5y u 6y2
52_' = V (tf - to) 2V

(49)



94

82tf 8_'2- 2 (tf - to) (50)

and the guidance law incorporating both first and second order terms is

_2

uSx ]
+

+ - 8z_ + u_.Sx

8x _ V(tf- t) V2(tf - t) ]V(tf- t)

(51)

In this expression, to has been replaced by instantaneous time t, as

appropriate for continuous closed-loop system operation.

CONCLUDING REMARKS

A computer simulator study is in progress to determine the effects of

the second order feedback terms of the example upon system performance and

guidance accuracy.
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SUMMARY /__.o_5 _/

This paper derives four constants of the motion for optimal thrust trajectories

in a central force field. Two additional constants of the motion are derived

which hold for singular thrusting arcs as well as impulsive thrusts.

The paper applies the constants of the motion for the impulsive thrust case, to

obtain a set of initial conditions for the classical adjoint variables to be used ae

a good approximation for a solution of the finite thrust arc by the indirect

method.
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INTRODUC_ON

The constants of the motion of a system of differential equations play an important

role in characterizing the solutions. This paper develops an application of the

constants of the motion to the indirect methods for obtaining solutions of optimal

thrust trajectories by iterative procedures.

The optimal trajectories for a thrusting vehicle in a central force field have been

under study for some time by Lawden 1, Leitmann 2, Melbourne 3, Breakwell 4, and

others. Four constants of the motion for this problem are well known. This paper

derives two additional constants oT the motion which hold for singular thrusting arcs

and impulsive thrusts. The paper also derives the four known constants of the

motion. The paper applies the constants of the motion for the impulsive thrust

case to obtain a set of initial conditions for the classical adjoint variables to be

used as a good approximation for the solution of the finite thrust arc by the indirect

method.

As is well known, the indirect methods for obtaining solutions of the optimal thrust

trajectories by iterative procedures suffer from an extreme sensitivity of the solu-

tion to small changes in the initial conditions of the adjoint variables. In effect,

the success of the gradient techniques, employed by Kelley 5 and Bryson 6, is largely

due to their ability to control the incremental step size for small changes in the

thrusting logic.

Once a good approximation to the optimum control thrust logic has been obtained,

the gi'adient techniques prove too slow for convergence and resort is made to the

classical indirect methods for the last few iterations. If a good approximation to

the initial conditions of the adjoint variables were available, the indirect methods

would be in more general use.

A good approximation to the initial conditions of the adjoint variables, for a given

problem may be obtained through a study of the limiting impulsive solution to the

same problem. Let us assume that a solution to an optimal thrust trajectory
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exists and that it is known. Then, if one could improve the efficiency of the

engine (thrust/weight ratio), a shorter burning arc could be obtained for an

improved optimal trajectory. In _e limit one would obtain the impulsive

thrust solution of the given problem which would indeed require a perfect

engine. Thus, we can look at the impulsive solution as a limiting point in a

simply connected region in the space of the initial conditions of the adjoint

variables. Intuitively, one might expect that an iterative procedure could be

developed which would start with the known impulsive solution and converge

to the required finite thrust solution.

This report applies the constants of the motion for an optimal impulsive tra-

jectory to obtain approximate values of the adjoint variables to be used for an

indirect method solution of the optimal trajectory with finite thrust. The

specific example illustrated in this report is the minimum fuel required for

bounded thrust between fixed initial and final position and velocity states.
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I. The Equations of Motion

The equations of motion of a thrusting vehicle in a central force field are

given by

R .k
= - /_---_ + --Tm

r

m = _ k
c '

(i)

where IT I = 1 , and c = constant.

The necessary conditions for minimizing the fuel consumption with time open,

or minimum time for fixed fuel, are given by

X
T = (2)

and

k = kma x if (IX[ - m.___qac> 0)

if <lxl < 0>k = kmi n c

kmi n < k < kma x if (IX1- racer).

(3)

The adjoint variables are solutions of the Euler-Lagrange dl/ferential

equations as follows:

•" l l" R
X = - _---ff + 3_ 3

r r

a = k-g_X.T
2

m

mR

(4)
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The final equations which yield the optimum trajectories (if any exist at all)

are given by

R k X
= _p--: ÷--__

P m
9

• " R.X R= - u--gX3 + 3.---g-- ,
r r

(5a)

(5b)

rn = _ k
c (5c)

a - k {xl
_,2

(5d)

To obtain the proper solution, it is necessary to make some statement

about the initial and final conditions of the state variables. For the purposes

of this paper it will be sufficient to characterize all the solutions of the

equations of motion through the constants of the motion. For this reason

no further discussion of the initial, final, or transversality conditions will

be carried out.
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If. The Constants of the Motion

This section contains a derivation of four constants of the motion of

equations (5a)- (5d). For the special case of the singular thrustingarc

and the impulsive solutions,two more constants of the motion are given.

By forming the vector cross product of ), with equation (5a), the vector

cross product of R with equation (5b), and adding, the following equation

results

°,

),x i_ + Rx), = _ bt ),x R Rx k
3 /_ 3

r r

- 0. (6)

Thus, three constants of the motion are given by the vector equation

d _{+ Rxk) 0
d--_(),x =

(7)

The equation may be written as a vector constant

kxR + Rxk = A. (8)

In order to obtain a more convenient form for the optimal thrust logic,

equations (5c) and (5d) may be combined as follows:

d
d'-_(toO') = rncr + mb

Ixl
= _ k_--_ + k _

C m
(9)

Thus

d k (I)k I _ mCr
d--'t(ma) = --_ c )

(10)
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If the coefficient of k is positive we use kma x, if the coefficient is negative

we use k . . In either case k is a constant so long as its coefficient is notmm

identically zero. On the other hand, if the coefficient of k is identically zero,

then

d
d--'t-(m(_) = 0 (11)

This condition is satisfied along a singular arc so that

m a = constant. (12)

Since IXI - m K_ = 0, it follows that IX[ is a constant.
C

thrust logic may be stated simply as follows: either

Thus the optimum

or

k = constant if [kl- m_____j 0
C

]:kl = constant if IX]- m._._.._a= 0
C

(13)

Itis now possible to obtainthe fourth constant of the motion.

dot product of equation (5a) with k, the dot product of equation

R, and add. The resultis

Form the

(5b) with

d (k • /_)

d=- m_ + k d IXlm dt "
r

(14)

Since

and

dt m
k d

-_ -_ Ikl + k I)'1 d-_ (1)

d a
k

dt c k Ixl_d (_)
(15)
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it follows that

d {Z{ _ k d {Z{
k-d-_- (m c ) m dt

d 2

dt 2 m(_.
(16)

Thus a fourth constant ofthe motion is given by

i'_t +D R')" d3 dt ma = h (17)

From equation (I0), an altered form of thisconstant of the motion is

{xl a
i" R + D R.)` k( ) =3 m c

r

(17a)

This is the so-called "Hamiltonian. In particular, for the singular arc

and

d
_---:-.m_ = 0
tO

i'R + R'k
• 3

r

- h

(18)

Another constant of the motion may be obtained for some restricted

cases. Form the dot product of equation (5a) with ),, the dot product of

equation (5b). with R and subtract. The result is

.o

k" R- R X d• ---_(x./_- R-i)

= _ 3Dx'a + k{x{
3 m

r

(19)
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In addition, we have

d
d-_-(X • R) = X • R +'k • R

=_.R+2_--
k" R

3
r

(20)

It is possible to eliminate k . R between equation (18) and equation (20) as

follows:

d (_ . R) - 2_ X" R _ h __ k" R + d)_ R = d"t- 3 3 _" (me7)
r r

(21)

It is also possible to eliminate
k- R

3
r

3 dt (k • R - R." X)÷

between equation (19) and (21) as follows:

d__(logm)=_-_ (ma +ht-)_. R)dt (22)

If I )- I is a constant (this is the case for the singular arc) we have as a fifth

constant of the motion

1 2 _ logm - ht = b3 (23)

Moreover, for the same restrictive case, another constant of the motion is

given by

mcr= d., (24)

To obtain the form of these new constants of the motion for impulsive thrust,

some care must be taken in approaching the limit forms.

It is necessary to distinguish between impulsive thrusts in the interior time

domain between the initial and final conditions, and the impulsive thrusts
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at the boundaries.

a) Interior impulsive thrust.

From equation (16) we have

d d d2
-c_T (l_,gm)_-I_,1 :-

• dt 2
(ms) (16a)

Integrating over an interior impulse, we have

- d d m_)+-c {:log(m÷) -log(m):} _- 1_1: (_-
d

- _-(re(r) (25)

It is plain that during an interior coasting arc, the engine is off,

d__ (m a) = O. Thus, it follows
dt

-c [ log(m +) -log(m-) } d_-Ixl =o.

k = O, and

(25a)

Since the jump in log m is not zero, it follows that for interior impulses

and

_lxl =o
dt

X = O.

(26)

Since k is a continuous function with continuous derivatives (up through "_" )

the_ the maximum value of I k I is the same constant for the entire interior

domain between the initial and final conditions.

d
For impulsive thrusts in the interior of the domain we have that _- (ruff) = O.

Thus, the two new constants of the motion for the impulsive case are identical

to those for the singular case within the interior domain.
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b) Boundary impulses.

For a boundary impulse, d(mcr) vanishes only at one end of the impulse.

Thus, equation (25)becomes

+ either d
-clogm d I),1 = _-_(m_)+

- dt d
m or - _ (m_)-

(25b)

The positive sign is associated with a terminating boundary impulse, and the

negative sign is associated with an initiatingboundary impulse. Since from

equation (10)

d k _m
_(ma) = m (I_I- %--)

the product of an infinite,impulsive thrust and a vanishing switch function

is indeterminate at an impulse. Equation (25b) may be used to evaluate this

indeterminacy. At both the initialand the terminal boundary impulses, we

have

- c log

+
m

m

d k =m_tlxl= • (Ixl - _) . (25c)

In addition, from equation (5d), integratingover the l_bundary impulse

+

(7 - 0'- = Cl),.l( I+ 1)
m m

(27)

Since at the interior boundary immediately following the impulse,

÷ _-clx_J
(Y

+
m

(28)
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it follows,

(Y
cl×l

m

m

(29)

Thus, at the boundaries we have

(me)- = (m_)+ = c[X] . (30)

The constants of the motion for impulsive thrusts at the boundaries are seen

to be identical with those for interior thrusts as well as the singular case, so

long as we interpret the state variables referred to their interior values at

the boundary.

The natural boundary condition for minimum fuel is given by af = 1. It is

now possible to obtain the natural scaling factor for Ikl from the equation

+

mfI×1 = m
c

(3 i)

The initial value of a may then be obtained from

+

mf
ainitial = _-

minitial

(32)

To summarize: the general constants of the motion (which hold for all solutions}

are given by

kxR+Rx_ = A ,

.x._ + i,.R- k(_ -I
a

3 c ) = h ;
r

(33)

for the special case of the singular arc and for impulsive thrusts on the

interior domain, the following additional constants hold:
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i). R + _R2 . _ + c-_- logm - ht = b ,

mc_ = d ,

for the singular case Ikl = constant,

for the impulsive case Iklinitial= l),Ifinal.

(34)
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III. The Impulsive Solution

Given two position vectors in space, and a central angle, cz, the vector

velocity required to pass a free fall trajectory between the two position

vectors is given by

/_ tan _/2 p

R1 = p r 1 R1 + r 1 r2 sin o_ (R2- R1)
(35)

Conversely, the velocity vector at the other end is given by

tan_/2 p

1={2 = p r2 R2 + r 1 r2 since(R2- R1)
(36).

The value of p is the magnitude of the angular momentum,

p : IR x RI : constant during coast• (37)

This parameter may be used as a variable for the purposes of differentiating

the total impulse to obtain the optimal impulsive trajectory.

Given the initial vectors R1, R 1- and the final vectors R2, R2 +, it is

required to find the minimum fuel necessary to go from condition one to

condition two in a central force field. Let

• +

A V 1 = R 1 - RI-

=
(38)

The scalar magnitudes of these impulsive changes in velocity are given by

(39)



113

The condition for minimum fuel is

(6vI+6v2) = 0
5p

(40)

The resulting equation is given by

5v2(AVl). _ • - 2 = 0 (41)

Equation (41) is an eighth order polynomial in the variable p which may be

solved by standard numerical techniques. For each real root, it is possible

to evaluate the total scalar impulse and we may choose the niminum of these

as our solution. The change in mass required to execute each successive

impulse is given by

+ - _ 6vi/c"m. = m. e
1 1

(42)
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IV. The Initial Conditions for the Adjoint Variables for Impulsive Thrust

The impulsive change in velocity may be obtained by integrating equation (5a)

+

• ml _1
_{1+- Rl - = -clog

m1-
(43)

The value of Ikl is obtained from equation (31)

+

Ixl-- m-L2
C

The initial conditions for k are

41

m2 + I_1+- RI-

c 5v I
(44)

The initial value of a

+

m 2
_I -

m 1 -

is given by equation (32)

and is valid only for impulsive thrusts.

In order to obtain a first order approximation to the initial value of a for

the finite thrust case, resort is made to a Taylor series expansion of am

about the initial time,

+ - d
(am)o = (am) o + _'_ (am)o(t - to)

(45)

From equation (25b),
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d

_(am) = c log
ml + kl" kl

I×ll

The value of the burning time, t - to, may be obtained from the finite,

constant mass flow.

C + -

t- t = _(m I - m 1) (46)

The solution for the initial value of (7 is given by

+ 2 kl kl ml +m2 e + - '

= "---U + _(m I - m I ) [kl[ l°g-'--U_a (to) ml k m I m I
(47)

To obtain the initial value of _, it is necessary to obtain the variational

state transition matrix. During coast, we have

"" R
R = -_--_

r

(48)

The variationalequation may be written as

bR bR
d2 bR /__ 3 N R" b"_"

- + 5 R
dt 2 bc_ r3 r

(49)

Let the c_i be the initial values of R and t{. The solution of equations (48)

and (49) is the so-called variational state transition matrix, @(R, R). The

differential equation for the adjoint variable ), is given by

= -p, _ + 3N k'5RR
r r

(50)

This equation is identical to equation (49). Since the initial value of • is the

unit matrix, it follows that
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1i_(t)

(51)

The first three equations of equation (51i may be evaluated at the terminal

time immediately preceding terminal thrust.

k2 = (_x o) 1 (_x o) 1
(5.ia)

Solving for kl

_1 = (_---_'-)2 - (_-_-_-) (-_--x)1
O O O

(52)

The vector k 2 may be obtained in a manner similar to k I from the impulsive

solution.

m2 + R2+ - R2 -

k 2 : --_ 6v 2
(53)

Equation (52) is the required solution for the initialvalue of k.

initial values of kl, kl and a 1 should affprd a good approximation forThe

the iterative indirect method.
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Abstract / /_
'3

The planar motion of a mass-point vehicle subject to the inverse square

central gravitational attraction of a spherical planet and to a tangential

retro-thrust force is considered,

It is shown that for minimum fuel consumption (free-time, free-range)

problems, the control variable (mass-fiow rate of the engine) may be

obtained explicitly" along the intermediate retro-thrust sub-arcs in terms

of the state variables of the problem. The variable retro-thrust sub-arcs

are shown to be integrable in closed-form and thus completely determined,

except for three constants of integration. The variable retro-thrust sub-arcs

are such that the magnitude of the vector velocity is constant along them.
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LIST OF SYMBOLS

k

P

r
O

S

t

V

:E

7
@

Acceleration of gravity on the surface of the planet

Altitude above the surface of the planet

Mass of the vehicle

Constant Lagrange Multiplier

Generalized Coordinate

Radius of the planet

Independent variable for parametric problems

Time

Velocity

Curvilinear abcissa on the planet's great circle

Dimensionless velocity

Angular position with respect to the fixed system

Independent variable variation at the terminal points

Dependent variable variation

Angle between the vector velocity and the local horizon

Dimensionless mass-flow

Dimensionless mass

Variable Lagrange multiplier

Dimensionless curvilinear abcissa

Boundary condition

Dimensionless radius
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List of Symbols (cont.)

Dimensionless time

Side condition

Function to be minimized

Superscripts

(-_>: <_F-.J
d_

<,'(....j(....j : <_:

Subscripts

I = Initial point

F = Final point

R = Reference value



I. Preliminary Considerations on the Variational Problem

Consider the set of equations
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- ,..., ,A, =O ,

<

d ---- /2"''_ 3q

2 = ---- •

with the boundary conditions

Any solution of Eqs. (I) and (2) is expressed in terms of the variables

(i)

(z)

The function _['_') is called the "control variable" of the system. Since the

problem has one degree of freedom associated with the control variable 2 ,

(3)

an optimum requirement may be imposed on the solution arcs. The following

variational problem of the Mayer form is therefore proposed: "Find in the

class D' (*) of arcs _/.(rJ , _(_w) , _ ----_= _ , satisfying the

_z' J_ -- 0 that arc which minimizesconstraints = 0 , a generalized

function L(_--_¢_4.Z, _.F 1_,_.) . of the end-values."

From theory (Refs. 1 to 6) it is found that the first necessary conditions

for an extremal in the class D' of arcs considered are that the Euler-Lagrange

sum A ----" _" ('_') _. , and the switching function A_ 6"_') _/I

satisfy the equations

(4)

(*) Arcs on which _ {'2") is continuous while

piece-wise continuous in the interval (_, _J-

may be only
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d Q-.A =0 (s)

and either one of the following

A_ (_') - O . for admissible Or,'_ ("_') _ O

A_. ('_)>= O . for admissible Or,_('_ _') _ O

A A (_') _ O . for admissible <J',_ (_') _ O

on every sub-arc

, _<-_ ,

, __= v_ ,

, _v _ _,

= "_a < "_' <= "F_ < _'F forming the extremal arc,

(6)

(7)

(8)

with a set of n non-simultaneously vanishing multipliers _. (_r) continuous

on every sub-arc, such that the [(r+l) x (2n + 3)_ - matrix of terminal values

(9)

is of rank R < r + I, and satisfying at junctions of sub-arcs the following

Erdmann-Weierstrass vertex continuity conditions

_(t_ ,o)

q =

(Io)
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where _c-0 and _¢4-0 are values of the independent variable immediately

before and immediately after the junction. For a normal non-singular extremal,

as here assumed, the set of variable" multipliers _. (_'_ is unique and the

constant multiplier /0o in _q. C9_may be set po -- !

The preceding considerations have been made in order to provide the

fundamentals for the problem to be treated in the following paragraphs.



Equations of Motion and Specific Optimality Problem

Consider the planar motion of a mass-point vehicle (m} subject to the

inverse square force field of a central, spherical, non-rotating body of

radius ro; (see Fig. I). If we assume that the thrust vector is applied in

the direction of the velocity vector but in opposite sense and that the central

gravitational field is expressed by g = go _ + ]7 , then the

non-dimensional equations of motion of (m) in terms of the intrinsic system

9/ =/o' _ z._:,,0 = 0 (iz)

.,(2_- 2' 2"%+ .TZ,,(9 04- = _ (13)
1° 2

o ,)_/o2,
:-,_.E9= 0 , (14)

:5_--.Z' + 9. =0. (15)
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In the previous equations,

The retro-thrust magnitude is given by T = - (dm/dt) V and thus the thrust
e

per unit of initial weight of the vehicle assumed on the surface of the

central bod 7 (r = ro) is

retroothrust is bounded,

-/- = /_ _ . It is assumed that the

T _ Tma x. Consequentl 7. ini.e., Tmin =

Eqs. (1 I) to (15) we will take

< 2,,< .Z.p
(16)

In particular it will be assumed that /_ rain = 0. The set of Eqs. (II) to

(15) is of the general form indicated in Eq. (I). Therefore, our previous

considerations in paragraph 1 may be readily applied.

The va.riational problem to be analyzed in this paper is that of finding

in the class D' of arcs _.('UJ , /_ C_) , Z" /,--, 5 ,

(_'= _ ' _ =..,'P' qs = Z , g..# = 0 , _'a '=._ ) satisfying
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Eqs. ( 1l) to (15) and prescribed boundary conditions of the form

- ( " ' " ) " °" t,..,5 , t--
that arc which minimizes the function /f_ = --//U F •

Since /_ ('_') is the control variable associated with the mass-flow

of the engine, the previous problem may be formulated in physical terms

as that of finding the optimum retro-thrust program in order to transfer the

vehicle from $iven initial to _iven final conditions with minimum fuel

expenditure. From the necessary conditions for an extremal analyzed in

paragraph I and Eqs. (ll) to (15} we find that the equations of the extremals

are

._/ ._ E_' ._._ 8 -- 0 • (17)
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_5_= +2=0, (Zl)

=0
(22)

(z3)

(24)

,/, +__, o__ 7 -_"_ --q (Z5)

- 5 + _s 7- f
=0,,

(26)

YOr. (27)
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A

J (29)

_.c_O

io
+ _ez_o A a _ _s _.o

- _ p_

Eq. (30) follows from Eq.

(30)

(5) after considering that "" -- O and

that time-independent control boundaries have been imposed. Thus, Eq.

(30) holds along the extremal in the interval '_Z _ _ _ "2"F- The

latter equation is a consequence of the Euler equations and it may replace

any one of them if so desired.

From theory (Refs. 1 to 6), it follows that the Weierstrass necessary

condition

2'
z,j: /,..,s , (31)
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(II) to (15). Also from theory, it follows that in our case, the Clebsch-

Mayer condition

+A ' '' '"
_a ÷_ ,_., ÷, _ A_j,_.,,. _ 0 , _,j= /,..,s , (3z)

r:

i

!

1

must be satisfied at each element

-' 7-" oj
(/_,., _, _, _',_)_ E by every

consistent with the equations of variation

, 9/, =0 _ L'= /,..,_"
(33)

Owing to the form of Eqs. (II) to (15}, the Legendre condition vanishes

identically. From Eqs. (27) and (31) it is also found that along ,_ - var.

arcs the Weierstrass necessary condition is satisfied in its weak form

W = 0. From the explicit expression of the Weierstrass condition and

introducing

(34)

it is found that the Weierstrass test may be written _/rm _c)-CD -> O)

(where the asterisk indicates values on E) and furthermore that, since CO
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is linear in the control _ the Weierstrass condition impl'ies that the

optimum control, in the bounded interval of control ( _. rain' Q" )'
max

be expressed by the minimality condition

may

(35)

The Weierstrass condition and the minimality requirement in Eq. (35) are

graphically shown in Fig. 2 assuming the strengthened form of Eqs. (28)

and (29).

From Eqs. (ll) to (15) it can be readily found that the extremals of

our problem are non-singular since the value of the functional determinant
i

j__ A

O

(36)

is unity.

to unity, i.e.,

=/;2;..; s

A = / _ i = /$2_.._ 5 ond
g:

, while the rest of the elements vanish.

In fact, the previous determinant has a diagonal of elements equal

t,
Thus,

_'(2") _ i= /,..j5extremal sub-arc the slopes

moreove r _._ (V._ and _. ('F)

along any

are continuous and

have at least first order derivatives

with respect to "_ .
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3. Explicit Form of the Optimum Retro-Thrust Program Along ,_ -Var.

Arcs

In this paragraph we will derive a closed-form solution for the optimum

variable retro-thrust program. Problems with free-time and free-range

will be considered. That is,

_rt
-- 0 and/or

a_e - O.
a%

the boundary conditions are assumed such that

_,]T_ = 0 , and = 0 and/or

The Transversality Condition implies that at terminal points of the

extremal, the following (Zn + Z) sub-conditions of transversality

=0 , (37)

(38)

aZ' -O , (39)

(40)
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must be satisfied for any set of differentials (d_] r

><i 0 (o,o.o>oJ

At the initial point we will take '_ ---- O

and d_i- O. Then, for the free final range, free final time problems,

here considered, we will assume Q 27 "_a7"t' O and
w

"4' -- _) . Thus. d_F (/_'< d_l= ) and a_ are different

from zero and may be totally arbitrary in Eqs.

_r= O ;thus c_=Oj

(41). Consequently, from

Eqs. (38) and (40) it follows that

_zb _D

Since L_ ----

" (4Z)

./I = O , Eqs. (22), (30) and (42) lead to

_ ('_) : o _x_'_ < TF

(43)

(44')
Ai z_Z < rr= 0 _ cons/. , = = .



135

Moreover, since our minimal problem is

no boundary condition is imposed on __

oF.

in Zq. (38), vanishes. Thus, d__ = d/a F

arbitrary and then Eq. (38) leads to

= --_'_F = _;n. , then

and the coefficient of 0/_
"F

is different from zero and

/

 a'b

Eq. (27) leads to

and thus from Eqs. (24),

= - . . = . (45)

_3 _ "/" _b" = O , (46)

(26), (43) and the total differential of Eq. (46),

_)3 (_") = K 3 = const., (47)

along the _ sub-arc. Eq. (47) implies that
var.

From Eqs. (27), (30), (43) and (44),

=O.
(48)

and then from Eqs. (48) and (49) it follows that

(49)
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(50)

Eqs. (17) to (Z6), and the total differential of Eq. (50), lead to

(51)

Consequently, the compatibility condition for a non-trivial solution

(_, , _ , _ , _.,, _,) _,(o,o,o,o,o) ,,

p=

= O. (52)

The vanishing of the previous determinant leads to the important expression
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p _/.82% = __
jo2

• (53)

which gives explicitly the retro-thrust program along /_.-var.

arcs for the minimum fuel consumption problem proposed.

extremal

3. 1, Int___eegration of the State Variables Along the ,_. Sub-arc.
var.

An interesting physical conclusion becomes apparent once Eq. (53)

is replaced in Eq. (19). In fact, after this is done we readily obtain that

along /_. sub-arcs, _ : const. Thus, the variable retro-thrusl
var.

program is such that the magnitude of the vector velocity is constant.

Now, from Eqs. (18), (20) and (53) the following integral x:nay be

derived

# _ C -- COn$_.
(54)

Also, from Eqs. (18), (21) and (53) we have

Finally,

s__,+,(/<j + t

from Eqs. (17), (18), (20) and (54) it is found that

(55}

(56)
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whe re

Thus, the variable retro-thrust sub=arc has been completely determined

except for three constants of integration.
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4. Integration of the Equations of Motion Along _ = 0 Sub-arcs

For A = "_ min (i.e.,

planar two-body problem are obtained.

to

= 0) the well-known integrals of the

In fact, the energy integral leads

(58)

and from the integral of area we obtain

= jo _ c_ 0 = = e o,)_t.
(59)

From Eqs. (58) and (59) it may be derived that

p- ,.,+(,÷
(60)

which is the equation of a conic section in polar coordinates with the origin

located at one of its foci. Introducing

Eq. (60) rdduces to the well-known form

F
"" = / + e _ [ ,r-',q) " (62)
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where _t) o , in the case of the ellipse, is a constant of integration

determining the position of the pericentror_ with respect to the fixed system,

_'-O) is the true anomaly (measured from the pericentron), _-- /_
. r.

is the non-dimensional semi latus rectum of the conic and e the eccentricity.

For H _ 0 the conic is an ellipse, for H = O, a parabola and for

H _ 0 an hyperbola. For elliptic motion

: -- _ (63)
P

0

/-4= 4

½

(65)



5. Conclusior_s

The minimum fuel consumption problems in the class of orbits satisfying

the hypotheses made in paragraph Z, with final time and final range not

specified, has been considered. This class of problems (free time, free

range) gives a lower bound for the propellant needed as compared to any

other solution of the problem satisfying an additional condition in the final

time and/or range.

For bounded thrust magnitude (between a given maximum value and zero)

the extrernal arc may be composed of sub-arcs of three types: full retro-

thrust, intermediate retro-thrust and zero retro-thrust {or coasting sub-arc).

The sub-arcs actually forming an extremal arc, their sequence, and location

of corner points has to be investigated in each specific boundary-value problem

proposed. In general, these depend on the boundary conditions imposed.

The intermediate retro-thrust sub-arcs have been obtained in closed-form.

The three constants of integration characterizing these sub-arcs may be

determined from the values of the state variables at the end-points or at

the corner points.

It has been shown that along variable retro-thrust sub-arcs the magnitude

of the vector velocity is a constant.

The variable retro-thrust sub-arcs as well as the coasting sub-arcs map

into points in the planes of their corresponding constants of integration. This

suggests a method of piecing the extremals which will be considered as an

extension of this work for given boundary-value problems.



z42

References

I°

*

o

,

,

°

Bliss, G. A., "Lectures on the Calculus of Variations, " The University

of Chicago Press, Chicago, 1946.

Courant, R., Hilbert, D., "Methods of Mathematical Physics, " Vols.

I and II, Interscience Publishers, Inc., New York, 1953 and 1962

re spectively.

Cavoti, C. R., "Necessary and Sufficient Conditions for an Optimum in

a Class of Flight Trajectories, " G.E. Space Sciences Lab., T.I.S.

R63SD28, March 1963.

Cicala, P., "An Engineering Approach to the Calculus of Variations, "

Libreria Editrice Universitaria Levrotto & Bella, Torino, Italy, 1957.

Bolza, O., "Lectures on the Calculus of Variations, " Stechert-Hafner,

Inc., New York, 1946.

Cavoti, C. R., "The Calculus of Variations Approach to Control

Optimization, " Special Report No. I, Marshall Space Flight Center,

Contract NAS8-2600, Huntsville, Ala., June 1962.

7. Lawden, D. F., "Optimal Intermediate-Thrust Arcs in a Gravitational

Field," Astronautica Acta, Vol. VIII, Fasc. Z-3, 196Z.

8. Lawden, D. F., "Optimal Powered Arcs in an Inverse Square Law

Field," ARSJournal, April 1961.

9. Kelley, H. J., "Singular Extremals in Lawdents Problem of Optimal

Rocket Flight, " AIAA Summer Meeting, California, 1963.

I0. Leitmann, G., "On a Class of Variational Problems in Rocket Flight, "

Journal of the Aerospace Sciences, 26, 586, 1959.



143

Y

i X

Figure I



144

QJ

f
I

I
L8X>--o _X<=ol

_min. _max.

X_=Xmi n. (Ax>O)

w-==>o ,,Sk_o

=0

W= ACd >0

(.A.x<o),X*-Xr,ox.

Figure 2



145

ON A RESTRICTED

COMPARISON OF T_O IMPULSE

AND ONE IMPULSE ORBITAL TRANSFER

Prepared by

Gentry Lee

Space Sciences Laboratory
Space and Information Systems Division

North American Aviation, Inc.

Special Report No.

August 8, 1963

Contract NAS8-5211

Prepared for

George C. Marshall Space Flight Center

National Aeronautics and Space Administration

Huntsville, Alabama



146

ABSTRACT

The comparison of one and two impu_Ise orbital transfers, basic to the

solution of the optimum n-impulse problem, is extended to include all co-

polar elliptical orbits of equal angular momentum. Familiar vector expres-

sions are used to identify, for all cases, a specific family of two impulse

transfers that require no more total impulse than the one impulse transfer

applied at the intersection. _

I. INTRODUCTION

Two impulse orbital transfer studies have been the subject of many

scientific papers (1-3)during the last few years. Recent advances, combining

both the analytical(_-5)and numerical(6)viewpoints, have virtually solved

the problem in its most general form. The nex_ logical development in the

general area of orbit transfers is an attempt to ascertain the degree to

which the two impulse solution approximates the optimum impulse solution.

At the core of this study is a comparison between one and two impulse

transfers. If Ting's suggestion(7)for copolar coplanar orbits--that there

always exists a two-impulse transfer between the two orbits that requires

less impulse than the best one-impulse transfer applied at the intersection--

could be proven true and extended to inclined orbits, then it would naturally _

follow that for n arbitrarily large, the n-impulse transfer would require less

fuel than any transfer using fewer impulses. This comparison, which assumes

no time constraint, was carried out by Horner(8)for coplanar ellipse to

circle transfers. He found that for his problem, except for notable cir-

cumstances, the optimum one-impulse transfer could always be beaten by a
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two-impulse transfer. Barrar(9)proved that the one-impulse transfer between

intersecting orbits was always inferior to the Hohmanntransfer, assuming

that the orbits could be rotated to produce a Hohmanntransfer. The note

presented here is concerned with fixed coplanar elliptical orbits of the

sameangular momentum.

II. FORMULATIONOFPROBLEM

Consider a plane polar coordinate system with origin at a conmmon focus

of two ellipses. Designate one orbit (the initial orbit in the transfer

problem) as A (See Figure l) and define the @-reference line as being in

the direction from the origin to the perigee of orbit A. The other orbit,

designated by B, has its perigee displaced by an angle y .

The velocity vectors of particles moving in the two orbits can be

given, using familiar hodograph representation(lO)and complex variables by

R_a(@) = ha (I + ea ei@) (i)
Pa

R_b(@) = hb (1 + eb ei(@ -Y)) (2)
Pb

Then a new function I, representing the difference between the velocity

vectors at any point @, is defined as

where the * refers to the complex conjugate. It is easily seen that if the

orbits intersect for some (@l, @2 ), I(_) and I(@ 2) represent one impulse

transfers between the two orbits.
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Consider _ family T of transfer orbits, defined by parameters et,

ht

p-_, and T. T is the angular displacement from the reference line directed

to the perigee of A. Then

"__(9) = h-_t 1 + et el(@ - r) (A)

Pt

ht
and for every triple (et, m, w ) where the transfer orbit intersects the

Pt

initial and final orbits, there exist two impulse transfers using that par-

ticular transfer orbit.

Finally define functions _, (i = 1,_), such that they represent two

impulse transfers between A and B and such that they are defined only at

ht

those values (et, _t'"r) where the transfer orbit intersects the initial and

final orbits. Then

N_[(et, h__t, T)= [(L - R-t) " (R-a- R-t)*]1 + [(_-t- _)" ('-_- _)*]½ (5)
Pt

A particular triple (et', h-_t , r') defines a transfer orbit T'. If
Pt

that orbit intersects orbits A and B, then there are four possible ways of

making a two-impulse transfer. The subscripts to the functions M can be

arbitrarily determined by assigning some kind of order to the points of

intersection. Thus the four combinations of points of intersection represent-

ing the possible transfers define the Ni's.

The optimum two-impulse transfer is then given by the least possible

value of the Mi's. It is this value that is compared to the lower of the

two values I(@l) and I(92). That this least value of the _'s is always

less than the lower values of I(@l) and I(@2) is what Ting(7)implied was

true and has been the subject of some research.
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III. ORBITS OF EQUAL ANGULAR MO_.NTUM

Due to the dependence of the functions I_ on the points of intersection

between the orbits involved, the closed formulation of the general problem

in terms of the given parameters is quite laborious. However, if orbits have

the same angular momentum, an interesting property greatly simplifies the

analysis.

Assume now that A and B have _the same angular momentum. Then

ha _ hb = h (6)
Pa Pb P

and the function I can be written as

: -

_ h (e 2 + eb2 - 2eaeb cos y )i (7)-5

The function i is now a constant, not dependent upon the angle 0. Thus

for fixed copolar orbits of the same angular momentum, the difference between

the velocity vectors is a constant.

The one-impulse transfer between the two orbits i_ easily seen to be

given by equation (7). However, the formulation of the >_'s has not been

considerably reduced. If, in the vector triple describing the transfer

h--tis fixed and set equal to h the problem becomes susceptible toorbit,
Pt P

analysis. For this reduced family of transfer orbits, due to the simplifica-

tion brought about by the equal angular momentum property, there exists only

one M function defining the two-impulse transfers.
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M(et, r) = h (ea2+ e2 _ 2eaet cos r)½
P

Now equations (7) and (8) are easily recognized as being similar to

the magnitude of a side of a triangle given by the law of cosines. Define

_a, _b, and e.t(ll)as vectors in directions of their respective perigees,

having magnitudes equal to their eccentricities. From Figure 2, it is seen

that M becomes only a function of the vector et. From the law of cosines

and the triangle inequality, the value, of M can never be less than the

value of I. However, if

= (9)

then it is obvious that the value for M (the two impulse transfer) is equal

to the value of I. There exists, therefore, a family of two impulse trans-

fers that give the same impulse as the one impulse transfer. Only if

_a = _b' in _ich case the initial and final orbits _muld be coincident,

_muld this family vanish.

The nature of the orbits for this family of two-impulse transfers can

be deduced from qualit;a tive reasoning. Subsequent algebraic investigation

of the intersections of these orbits proved this reasoning to be accurate.

Since the angular momentum is not changed in these transfers, the only com-

ponent of the velocity that is altered is the radial component. This fact,

when combined with another property of copolar ellipses of the same angular

momentum (they intersect 180 degrees apart), leads to the realization that

this family represents a splitting of the impulse at the intersection point

O<k<l
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of A and B. Each orbit with angular momenttun equal to the angular momentum

of A and B and with e' defined by (8) passes through both intersection
-t

points of A and B. In the two impulse transfers that equal the one impulse,

a certain percentage of the radial velocity change is used at the first inter-

section point and then, after a 180 degree coast, the final velocity change

injects into orbit B.

IV. CONCLUSIONS

It has been shown here that for copolar elliptical orbits of the same

angular momentum, there exists a specific family of two impulse transfers

that use no more impulse than the one impulse transfer at the intersection.

If it is true for every_a , _b, and _ combination that there exists at least

one k, 0 _- k _- l, such that the total impulse as a function of the angular

momentum is not a minimum at ht = h then Ting's suggestion would hold true
Pt P

for orbits of the same angular momentum. However, a general study, by means

of vector analysis, of the quantities involved _s unable to produce this

proof. Indeed, recent intensive numerical investigatlons (12 )have sho_ that

there are mar_T orbital configurations for v_ich the optimum two impulse and

one impulse transfers vary by only a slight amount. Three years have shown

that the general proof of Tinges statement is elusive; perhaps more investi-

gation in this area will be able to demonstrate further regions of validity

(or invalidity) of his suggestion.
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It is proved, given two elliptic orbits that are tangent at a point not

an apsis, and given that a pair of near by intersections is obtained by suf-

ficiently small variations of the elements (from the tangent condition),

that the impulse for transfer at one of the intersections v_ll be less than

that for transfer at tangency.

For the case that the intersections are caused and deepened by changing

only the relative orientation, numerical results show the one impulse trans-

fer to pass through a minimum. On the same graph there is also plotted the

impulse for optimum two-impulse transfer and it is seen that near the one

impulse z_imum there is a region where one-and two-impulse transfers require

the same impulse to two parts in lO 5 for the moderately eccentric cases chosen.

It is suggested that this type of behavior may be the fundamental reason why

two-impulse transfer is so close to optimum impulsive transfer even if it

is not really the optimum. __
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LIST OF SYMBOLS

Orbital elements; eccentricity,
(orbit 2 with respect.to orbit i)

Given by C2 = p2el2 - 2 p ele2 cos_

Given by D2 =p£e I - 2p2 ele2 cos_ + e22

Given by D2 =P3el2 - (p + 1)p ele 2 cos_ + e22

Impulse to transfer in unit of_l

unit vector perpendicular to perigee direction

semi-latus rectum, argument of perigee

+ _22

Radius

Unit vector perpendicular to radius

Half angle between the two intersections

Gravitation constant ( G times mass)

Perigee of orbit i measured from direction bisecting the angle
between the intersections (arbitrary when introduced)
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I. INTRODUCTION

The study of impulsive transfer between two given coplanar elliptic

orbits around an attracting body has so far yielded no proofs showing

whether one, two, or more impulses yield the minimum impulsive transfer.

There are special cases in which three-impulses are better than two, 1 but

for the most part the best two-impulse transfer between two given orbits

seems to be praccical_unbeatable. It was noticed very early in studies at

the Space Sciences laborato_ that the optimum transfer orbits were very

nearly tangent at both departure and arrival points to the given orbits.

This is suggested also by the fact that co-tangential transfe_ ,4 is a good

approximation to optimum try-impulse transfer over a wide range of orbit

shapes. However it is known that, given two elliptical orbits which are

tangent at a point which is not an apsis, the optimum two-impulse transfer

is slightly better than the single impulse transfer at the point of tangency.

This can be proved by an analysis similar to that below and it is evident

from the numerical results presented.

Now given the optimum two impulse transfer between the two originally

given orbits one must ask whether or not the single impulse transfers utilized

at either the departure or arrival points could be replaced by a two-impulse

transfer that would require less total impulse. If the answer is affirmative,

then three impulse transfer is better than two, 4 better than 3, etc. However

if a better two-impulse transfer cannot be found to replace either of the

transfers at departure and arrival then perhaps the optimum two-impulse trans-

fer is in fact the optimum impulsive transfer. This paper does not purport

to answer this question definitively. However, it is demonstrated that over
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a narrow but finite range of orbit shapes for shallowly intersecting orbits

one-impulse and optimum-two impulse transfer require practically identical

total impulses. Thus we are led to investigate the properties of a single

impulse transfer for two orbits that intersect shallowly. Such pairs of

intersections are obtained by applying small variation(s) to the elements

of one or the other of the two orbits starting from a tangency condition that

is not an apsis. The theorem which will be proved is that one of the two

intersections requires less impulse than the tangency situation and the other

requires more as the intersection is initiated. Further the one requiring

less impulse is expected to pass through a minimum as the intersection deepens.

The fact that the tangent case is not an optimum single impulse transfer for

fixed shape orbits that may have arbitrary relative perigees _as shown by

L. Ting 5.

In the last portion of this note numerical results are presented

showing, for the case in which the intersection is produced by rotating the

two orbits, the nature of the one impulse minimum. For this range of shapes

the impulse required for the best two-impulse transfer is also indicated,

and it is seen that the two curves are extremely close together over a range

of shapes near the minimum of the one impulse curve. The fact that this

region is finite in width may make it possible for the transfer orbit for

the optimum two-impulse case to satisfy such a condition at both ends. This

may be the fundamental reason why two-impulse transfer is so close to the

optimum impulsive transfer even if it is not really the optimum.
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ii. THE SHALIK_V INTERSECTION

Consider two elliptical orbits that are nearly tangent. These are

2
characterized by the elements Pl, el _ O, w I = 0 and P2 =P Pl' e2 _ O,

_2 = w. The angular reference direction is taken as perigee of the first

orbit and thus _ is simply the difference in the two perigee directions.

We require _ _ O, eI _ O, e2 _ 0 in order that the tangent case be not an

apsis. Thus circular orbits are excluded from the discussion. For Pl = P2'

(or p = l) the intersections of the orbit (if any exist) must lie 180 ° apart

and we exclude this case because a shallow intersection is to be characterized

by a small angle between the tvm points of intersection.

In order to determine the points of intersection of tyro coplanar orbits

we first introduce an arbitrary reference direction so that _l = _' w2 = _

+ w. The angles are illustrated in Figure 1. Let one of the intersections

be at E. Equating the two expressions for radius at this point gives

Thus

Pl P2
r _

1 + elcos(E-¢) 1 + e2cos( - -w) (2.1)

Pl + Ple2 .cos_ cos(_ + _) + Ple2 sin_ sin(_ + w)

= P2 + P2el cosE cos @ + P2el sin_ sin

(2.2)

Now we choose _ so that the terms involving sine cancel, thus requiring

tan _ = P!e2 sin_

P2el - Ple2cos

2=P 2where p
Pl

e2 sin_

pZe I - e2cos

(2.3)
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The value of • is obtained from

cos_ = Pl - P2 _ I -p2

P2elcos _ - Ple2cos(J_ 4-_) -p2elcos _ - e2cos(_ + _)

By using

sin _ = e2 sinw
D

We find

cos _ = p2ei - e2 cos_
_D

and

(2.6)

cosE = p2-1__ (2.8)
D

Since there are two intersections it is clear that they must lie at

E and the reference direction must bisect the angle between the two inter-

sections. Suppose now that the orbits are tangent to one another and that

this is indicated by the subscript (T). This requires cosE T = _ 1 and the

two values of E T are either _ O, or _ 180 °. Which pair it is depends on the

We suppose that _ and D are chosen

as indicated in Figure 1. Equation

quadrant chosen for _ or on the sign of D.

so that the tangent case will beET = _ O,

(2.8) yields

DT = p T2-I (2.9)

We are concerned ;_ith small variations in the elements PI' P2' el' e2

and w from the values at tangency and since only the ratio P_Pl is involved

we have replaced Pl and p2with p(=_pl ). Thusp =pT + 8p, eI = elT +

8el, etc., where 8p, 8el, etc. are the small changes.
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We assume • << I and we may write

_2 _ _ S cos_ 8sj (2.12)
I - cos_ ,..,-_- ,.., j=l @s j

(Note that D involves

Thus

where a j are the four elements: #, el, e2, and e.

the elements, a j, and its derivatives are included. )

In the numerical comparisons below the shallow pair of intersections

(2.13)

_ll be generated by rotating one of the two tangent orbits with respect to

the other. Thus p, el, e2 are considered fixed and only e is changed in the

proper direction. We find

D 2 - DT2 = 2 p2ele 2 [cose T - cos _T + 8_)] ,-.,__2p2ele 2 sine 8e

and

__ _ 2ele 2 sine (Be) •

In the coefficient of Be no distinction is made between e T and e.

(2.z&)

Iii. 01_ I_G?UISE TRANSFER AT SHALL@V ih_RSECTIONS

The velocities at the point of transfer are expressed in units of

. Thus

z2:

v+%_%

(3.1)
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= ! (v+ e2½) (].2)

V is the unit vector perpendicular to the radius at the transfer

point and Ql' Q2 are unit vectors perpendicular to the perigee directions

(See Fig. 1). The impulse to make the transfer, in units of _V_7_l , is

expressed as

V + e2Q_2 - 2 V - PelQ 1 (3.3)
j=-

P

= V_ (1 - p) + e2_Q2 -pelQ 1 v (1- p) + c

P P

where

= e2Q 2 - pe 1%

Then

(3._)

where

j2 p2 = C2 + (1 _p)2 + 2(1 -p) C • V_ (3.5)

and

C2 = p2e12 - 2pele 2 cos_ + e22 (].6)

C_ " V = e2 Q2 " V-pe 1% • V (3.7)

= e2 cos (_ - _ -_) -pe I cos (< - _)

The angles (( - _ - w) and (_ - _) are the true anomalies of the transfer

point on the second and the first orbits respectively. By using Eq. (2.5)

and (2.6) the angle _ is eliminated and Eq. (3.7) reduces to:

sin_
C • V = + cos, E2 +-- (I - p)p ele 2 sin_ (3.8)- - D D
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where

E 2 =p3e12 _ (i + p) Pele 2 cosw + e22

Thus

(3.9)

j2p2 C2 + (p- i) 2 2(p- I)[ E2 (i- p)pele2sinwsin_ ]= - cos_ + (3.1o)
D

Now we can make the comparison of the impulse for the tangent condition

JT with those for the two points of intersection: Jxl and Jx2" The only

difference between these two cases is the sign of • and so only one expres-

sion (Eq. 3.10) is needed. For the tangent case

_T2= _ + (PT-I) 2 2@ T-I) ET2
CT2 p T2 pT2DT

(3 .Ii)

Again we assume E to be small and consider only small changes (infinitesimal)

in p, el, e2 and w.

Since we may write

2 2
Jxl - JT = (Jxl - JT ) (Jxl + iT) _ (Jxl - JT ) 2iT

(3.12)

we find

i [{c2 CT_2h /(p-l)2 (PT-I)2h
J_ -JT- 2iT[\;2- _) ÷ \p-7-Z-- _ ] (3._3)

+ _ 2(p-l)E2
\ p2D

2(pT-l) ET2 ) 2_-I)2 eie2 sinoJ ]
COSE + + E

pT2DT p D

Now all the paired terms in Eq. (3.1) canbe expressed _s Taylor

series about the tangent condition and the leading terms involve 8p, 8e l,

8e 2 or 8m. The term involving c however has in its leading term_/_%CJl ,



165

_p

i

_v_2 , or _ from the expression for _ . (Eq. 2.13 ). Therefore as long as

the • term does not have a zero coefficient it will dominate the expression

at first as the small changes are added. Since • can be positive or negative

it follows that for one intersection the impulse to transfer is at first

less than that required at tangency, and for other intersections it is greater.

It is believed that the restriction allowing only changes that cause

the tangency to yield a pair of real intersections will make all of the

paired terms in Eq. (3.12) positive. This is the case for changes in

(Eq. (3.1_) below), but it has not b_en proved for changes in p, el, or e2.

However if it is true, than a minimum one-impulse case will occur as the

intersection is deepened by a continuous change in any of the elements unless

higher order terms interfere.

For the case that p, el, e2 are fixed and only _ is varied, Eq. (3.13)

yields :

[ 2E2 (P -I)2 ] (3.14)Jxl - JT _ ele2 sin_ 8_ (p + i) D2 +
-- JT pD

Removing • by using Eq. (2.1A) gives for • neg.

ele2sin_ [ E2 =_ele2sin_ ]
Jxl - JT _---JT (P + i) B_2 D-2 -.-- _ TY

The terms neglected in Eq. (3.15) begin with _3/2, and 8_has to be

positive in the direction which yields the pair of shallow intersections.

Since the sign of the coefficient of _ is positive Eq. (3.15) has a

minimum which is given by

(3.Z5)

ele 2 sin_

(_)m = 8(p + i)2 E4/O_
(3.]6)
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and

The corresponding values of _ and Jxl

p ele2 sin_

_m=p_-i 2(p +i) E2/D2

- JT are

(3._7)

e21e22 sin 2

(Jxl - JT)m- _JT(P + 1)3 E2/D2 (3.1_)

IV. NUmeRICAL COMPARISON OF ONE AND _VO-I],_ULSE TRAI{3FERS NEAR THE TANGENT
CASE

A program for one-impulse transfers was developed by G. A. McCue who

supplied the one-impulse data presented. In addition several two-impulse

optimum transfers for the cases considered were supplied by G. A. McCue

who utilized the program described in his report on Optimum Two Impulse

Orbital Transfer 6.

Two orbit pairs were selected for the study. They are: case (1)

p2 = 1.2, eI = e2 = .2; and case (2) p2 = 1.8, eI = .2, e2 = .6. The cor-

responding values of w for tangency are: (1) _T = c°s-1 .6 = 53._1301 and

(2) _T = llO'_37Al" In Table 1 there are collected the values of the con-

stants and the values of 8win,_m' (iT - Jxl)m for both cases.

The values indicated "(pred.)" were obtained from Eqs. (3.16), (3.]7),

and (3.].8)while the values labeled "(comp. )" were obtained by the one

impulse computer program. It can be seen that the predicted values are quite

close to the actual values obtained and the equations do give, for the case

of an orbit pair rotated to tangency and then to shallow intersections, the

apprc:cimate size and shape of the one impulse transfer versus perigee angle

curve.
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A program for obtaining the best 180° two-impulse transfer _ was used

as a guide in testing results because of its simplicity. In fact the data

used for the two-impulse curves sho_ in F.4gures2 and 3 were obtained with

this program. Points on this curve obtained by the two-impulse optimization

program are indicated by black dots. They are indeed at a lower total impulse

than the 180 ° curve but on the scale shown the difference is not significant.

The investigation of the real nature of these small differences is a subject

for fur ther work.

In both cases shown the one and t_._ impulse curves agree to within

2 parts in lO5 over a finite range of relative orientations and hence of

relative shape. In this region there is no practical advantage as far as

total velocity change is concerned v_ether one or two-impulse transfer is

used.
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TABLEI. PARAMETERSCONCERNINGONEIMPULSETRANSFERNEARTANGENCY

Fixed elements

Perigee difference
for tangent case
(deg)

Imp"_lseat tangency
unit _

CASE 1

p2 = 1.2, eI = e2 = .2

53.1301

.0853686 (1971.31)*

CASE 2

p2 = 1.8, eI = .2, e2 = .6

llO.3 741

.296964 (6259.9)**

(8_)m (pred.)

(deg) (comp.)

(_)m (pred.)

(deg) (comp.)

(Jx- JT)m (pred.)

(comp.)

-.00o348

-.00o348 (8.o3)*

.174

.172

-.0O087

-.00089 (18.9)'_:-_'_

_ In ft/sec for Pl = 5000 miles

<_ In ft/sec for Pl = 6000miles
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SUMMARY A

3o
The purpose of this report is to present a matrix method for

representing the general cubic _ aijkXiXjX k and to give directly
i,j,k

the coefficients of the cubic subjected to the transformation

x.1= Yi + _i' i = 1,2, ..., n. This method enables one to com-

pute the coefficients of the new cubic form in any order and to

apply approximation in the final summing stages. '__
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A MATRIX REPRESENTATION OF THE GENERAL CUBIC AND

ITS TRANSLATION

The matrix representation of quadratic forms xTAx is

well known, [i], where xT= (XlX 2...xn), and A is the n x n

matrix (aij). The algebra of matrices and its application to

space missile theory is available in excellent form in a number

of available publications, [2], [3]. Higher dimensional matrices

mentioned in the mathematical literature occasionally but mostly

as an introduction to the study of tensor algebra [4]. In this paper

we use the usual laws of matrix algebra and the extended asso-

ciative law for multiplication of nXnXn matrices by vectors,

X, X T, and X D (the depth element) and, with this, represent the

n

general cubic _ a kXiX.Xkij j in the form xT,xD,Ax.// It is

i,j,k

convenient to denote the nXnXn matrix A in such a way that

z i \dill 41Z " " " ailn

aig I ai2 g " • • aig n

ainl ain z " • ain n /



176

represents the ith slice of A. In.general the element a
ijk

in the ith slice jth row and the kth column. We have for

/x I Xl '/"r Xn

X = _ xT= xD=

_xn Xn /) / xlx/

The definition of the product xDA is given by

n
xDA = _ xiA •

i=l

The ith summand of X DA is x.A i-] . Thus, X T/XD/AC is
1

n 2given by _ x.X T X. From this it follows that, in the gen-
1

i=l

eral cubic, the coefficient of

3 3 3

x. is x2 is .... x is a1 alll' a222' n nnn.

2 2
Partial coefficients of the x. x. term appear for x.x., for

i J ij

2
x.x.x., and for x.x., and are a .... a.... and a respectively.
i j i J i iiJ iJi uii

We note that aii j and aij i are the ij and ji elements of the

ith slice of A and a... is the diagonal element of the ith row,
jll

ith column of the jth slice. Selecting a... = a... = a . is in
iiJ iJi jii

line with preserving symmetry. The term xisx k occurs with
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the partial coefficients aijk, aik j, ajik, ajk i, aki j, and akj i

and choosing these equal preserves symmetry in the

3
matrix A. As a check we note that A contains n

nXnXn

elements

3
and that n of these are associated with the x., i = 1,2,-..

1

2
that 3n(n-1) are associated with the x.x.,

1 j

with the xisx k, (i, j, k, _)

Translation from x.1 reference to Yi

• n,

i +j, and n(n-l)(n-2)

where X = Y+_,

x.1 = Yi+_i is given by

i=l

n

T _.
= (yi+_i)(Y+_) A (Y+_),

i=l

with _T = (_k_Z... _n). Using the distributive law and matrix

multiplication for these matrices, we have

n T _ T i_I T i-1 T--li

(yiY A Y+_i Y k Y+yi_ A Y+_i _ A Y+
i=l

• A

An examination of this sum yields the coefficients of the

3

Yi has the coefficient a..., as expected,lll

YiYj Yk:

2

yiy i has the coefficient (aii j + aij i + ajii) , i _= j;

yiYjY k has the coefficient (aij k + aik j + aji k +

ajk i + aki j + akji), (i, j, k, _=).
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z
Yi

YiYj

has the coefficient

n n

2 _tatii + 2

t=l t=l

n

+ 2 aiit_ t
t=l

which simplifies to

_taiti

n

2 _t(atii + ait i + aiit).
t=l

n

(for i_j) has the coefficient 2 _t(atij + atj i) +
t=l

n n

S _t(aitj + ajt i ) + S _t(aijt + aji t)
t=l t=l

which may be written more compactly as

n

; _taDli j, t)
t=l _" '

where p(i, j, t) means the summation is over all permutations

of i,j,t for given i,j.

n n

The coefficient of Yi is 2 (_ts_
t=l =1

n n

_satsi ) + ; (_)t s_t=l 1 atis_s) +

n

2
t=l

n

2 13saist_ t'
s=l

which may be written more compactly as

n n

S 2
t=l s=l

The constant term,

_St_s(ats i + atis + aist)} •

as expected, is
n IT
2 13tD A D,

t=l

that is, the

/

/"
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original function

To illustrate,

3

Y5 is

2

Y5Y7

xT/xD/Ax with x i replaced by _i"

we find that tl_e coefficient of

(2
555'

is a557 + a + a 7575 55'

y5Y7Y 9 is a579 + a597 + a759 + a795 + a957

n
Z

Y5 is _, _t(at55 + a5t 5 + a55t),
t=l

n

y5y 7 is Z _tap(5 t, 7)
t=l

n n

Y5 is Z { t s((2ts5 + (2 + (2st )
t=l s=l t5s 5

Transformations of the type used to test matrices for property

"p" [5],[6] suggest that a more judicious selection of the elements of

the coefficient matrix of the general cubic will simplify the coefficients

of the translated cubic and yet preserve the symmetry of the A I .

Select the
aij k in such a way that

3
ax. implies a = a

I iii

2
ax.x. implies

lj
(2iji + (2iij = 2(2iji' ajii = O, for
(2jii' (2iji = aiij = 0 for i>j.

i< j
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axixjx k implies a = aijk + aik j = 2aijk,

ajik= ajld = aki j = akj i = O, for i <j, k.

Examination of the modified nXn×n matrix A reveals that

it is somewhat like the completely trian_u/ar matrix in skel-

eton [7]. In fact it is completely pyramidal in that A II may

contain nonzero elements in every ij position, .A_p contains

only zero elements in the first (i-l) rows and (i-l) columns,

•• •, A n contains only one possible nonzero element,

It is of interest to note that the coefficients of the

a

nnn"

x.1 occur in/_.

dimensional diagonal alll, a222, • • •, a Also we notennn"

that

n elements are associated with the
3

X.,
1

2n(n- I) ---
(n-l)n

elements are associated with the

2(3 ) elements are associated with the xix.x k.
J

2
X .X._,

1]

From this we see that

n+ {2n(n-l) (n-l)n} + Z(3 ) n(2n+l)(n+l)__ L22 = 6 --
i=l

which verifies the pyramidal skeleton of A.

In this case A is called /(1,1, 1); (n,n,n)/ pyramidal
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where the (I, I, i) gives the only possible nonzero element in the

first slice and the possible nonzero base is the nth slice.

If computations are necessary, it is desirable to reverse

the assignments of the coefficients aijk and obtain A in the

/(n, n, n), (i, I, i)/ pyramidal form. This permits shorter

summations and the use of Cyclic Entry-Exit Programming

techniques which require shorter computing time [8]. It is also

of interest to note that for x = i, xT/xD/A.X is the general
n

nonhomogeneous cubic in x I, x 2, " •" , Xn_ 1 which thus contains

all cubic, quadractic and linear terms, and the constant term

a Also, the familiar trilinear form is given by xTyDAz.
nnn"
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§1

This paper describes new iterative algorithms for obtaining the

'best" rational approximation of "fixed form" to a function of many var-

iables whose value is known at a given set of data points. These methods

are offered as alternatives to the algorithm developed for solving prob-

lem (a) in [ i ] and may be more effective than the previous method of

solution. In the new algorithms, auxiliary functions are optimized under

the previously given constraints. This approach makes available new in-

formation which can be used to determine bounds for c* , the optimum

solution for the original non-linear program. These bounds are, in turn,

used to compute successive values for ¢ in the algorithms.

AS in [ I ], problem (a) is formulated as follows:

f(_) iS a function whose value is known at

in a multidimensional space.

of _ . Define

(1) =

with M and N

of minimizing

[Pi M}i'l and

fixed and A. and B.
i j

Max

I_ k_;n

The associated non-linear problem is:

Minimize ¢

subject to the constraints

n points, 51' "''' _n '

[Qj_N j-1 are known functions

unknown. The problem is that
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(2) (k = I, ..., n) .

Each constraint of (2) can be represented by the pair of inequalities

(3)
f(zk) - R(_ k) • ¢

- f([k ) + R([ k) _ ¢

(k = i, ..., n) ".

Assuming that

and that P(z)

or Q(_k ) <0

Hence

R([) does not have a pole on the set of points [_k}k.i

and Q(z') do not have a common factor, then Q(z k) > 0

for each k . We will assume that Q(Zk) > 0 for all k .

Q(_k ) _ c > 0 , (k - I, ..., n) , for some positive number c .

Now (3) becomes:

(4)

[ - •, _ fGk)Q(_) + P(_k ) " Q(Zk)e

- Q(z k) •-c

(k " I, ..., n)

Substituting (1) into (4), the problem becomes:

Minimize e

subject to the constraints

(5) <

f

- 4.0PkiAi + L_j.oYkqkjBj - L_lj.OqkjBj¢ " 0

_i,,oPkiAi - _j.oYkqkjBj - _j=OqkjBj¢ _; 0

.=_where Pki = Pi ( ) ' qkJ " Qj(Zk) '

_j=0qkjBj _ -c

(k = I, ..., n)

and Yk = f(_k ) "
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The following notation is introduced to simplify the discussion.

M N N

" gk(A,B,¢) = - T PkiAi + _ y_q_.B. - _ q_B_e
i=0 j=0 z zj j j=O -J J

M N N

gn+k(A,B,¢) - i_0PkiA i - T y_q_.B. - T q_iBl¢j=0 z zj j j=0 -J J

N

g2n+k(B) = T q..B.
j-0 zj j

(k - 1,2,...,n)

Program (5) now becomes

"Minimize ¢

subject to the constraints,

(7) < gk(A,B,¢) g 0

gn+k(A,B,¢) g 0

-g2n+k(B) g-c

If e

(k = 1,2,...,n)

is assigned some positive value, the constraints of program

(7) become linear in the unknowns A. and B.. There is no objective
l J

function associated with the linearized constraints. Here, as in [ 1 ],

s is considered to be a parameter. By iterating on ¢ , the optimum

e* can be reached as closely as desired. Upper bounds for e* as a

function of the parameter e are obtained through solving an associated

linear program, and from these bounds a new value of ¢ is computed.

After solving the linear program with a particular value of ¢ , a

rational function is obtained which can be used as an approximation for

the best rational function.
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§2

By considering the following modification of program (7), an algo-

rithm for iterating on • can be constructed. The successive values of

the new objective function, I , give bounds for ¢* and the iterant

(8)

?Minimize

subject to the constraints

gk(A,B, ¢) •

gn+k(A,B,¢) _ I

-g2n+k(B) _ -c

(k = 1,2,...,n) .

Some properties of programs (7) and (8) will first be given. These

properties will then be used to develop the new algorithms for obtaining

the optimum solution to the original problem (5). Let I*(¢) denote the

optimum k of program (8) and ¢* denote the optimum ¢ of program (7).

Property i

There is a feasible solution for program (8) if and only if there

exists a vector B such that g2n+k(B) k c (k = 1,2,...,n) .

Proof: If there exists a vector B such that -g2n+k(B) ¢ -c , then

there exist an A , ¢ , and k such that gk(A,B,¢) _ I and

gn+k(A,B,¢) ¢ % , (k = 1,2,...,n), since A , e and I are unrestricted.

Hence program (8) is feasible. The necessity is obvious.

Property 2

I*(¢) is a strictly decreasing function of ¢ for ¢ _ ¢* .

Proof: Let (A*(¢0) , B*(¢0) , I*(¢0) ) be an optimum solution of program

(8) with ¢ = G0 . For _¢ > 0 ,
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gk(A*(¢O), B*(eO), c o + A¢)

= gk(A,(e0), B,(eO) , ¢0) - g2n+k(B*(eo)) • Ae _ _*(eO) - c • Ae, and

gn+k(A*(eo )' B*(e0)' ¢0 + Ae)

-gn+k(A*(eo), B*(eO) , e 0) - S2n+k(B*(e _) • Ae _ X*(e O) - c • Ae

(k - 1,2,...,n) .

Hence (A*(e0) , B*(e0) , l*(eO) - cA¢)

(8) with e = e 0 + A¢ . Therefore

Hence

is a feasible solution of program

_*(e 0+ Ae) _ t*(e 0) - c • _e .

I*(¢0 + Ae) < _*(¢0) .

Property 3

(i) _*(¢) > 0 if and only if ¢ < ¢* .

(ii) _*(¢) - 0 if and only if ¢ - ¢* .

(iii) I*(¢) is - = if and only if e > ¢* .

Proof:

(i) If e < ¢* , then for any A and B , gt(A,B,e) > 0 for

some t , i • t • 2n . Therefore k*(¢) > 0 if ¢ < ¢* •

Suppose t*(e) > 0 . Then the constraints of program (7) are not

satisfied and hence e < e* . Therefore if k*(e) > 0 , • < e* .

(ii) Suppose k*(¢) = 0 . The constraints of program (7) are satis-

fied and ¢* • ¢ . If ¢* < ¢ then by property 2, k*(¢*) > 0 . This

implies by (i) that ¢* < ¢* . Therefore ¢ - e* .

Suppose ¢ 1 ¢* . Then A*(e) _ 0 . If A*(e) < 0 , and (A*(¢) ,

B*(¢) , _*(¢)) is an optimum solution of program (8), then
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whenever

sk(A*(¢), B*(¢), ¢- _¢) a 0

gn._(A*(O, B*(¢), ¢- _¢) • 0

-g2n+k(B*(¢)) _-c

A¢ _ - _*--*/_ .
c

(k " 1,2,...,n)

This implies that program (7) is feasible with ¢ - ¢* - &¢ . This con-

tradicts the definition of ¢* . Therefore _*(¢) - 0 .

(iii) Suppose k*(¢) is - _ . By (i) and (ll), ¢ > ¢* .

Suppose ¢ > ¢* . Let (A*(¢*), B*(¢*), l*(¢*)) be an optimum solu-

tion of program (8) with ¢ - ¢*'. By (ii), k*(¢*) - 0 . Then

gk(A*(¢*), B*(¢*), e)

- gk(A*(¢*), B*(e*), e*) - g2n+k(B*(e*))(¢ - ¢*)

<0

gn+k(A*(¢*), B*(¢), e*)

- gn+k(A*(¢*), B*(¢*), e*) - g2n+k(B&(¢*))(¢ - ¢*)

<0

Let X -

For _ a i

- g2n+k(B*(¢*)) < - c

(k" 1,2,...,n) •

k gk(A*(e*), B*(¢*), ¢), gn+k(A*(¢*), B*(¢*), ¢) .

consider (_A*(¢*), _B*(¢*), _k) . Then

gk(_A*(¢*), _B*(¢*), ¢) • _k

gn+k(_A*(¢*), _B*(¢*), ¢) _ fix

- 82n+k(_B*(¢*) )

Therefore k*(¢) • _ . Since

arbitrarily small. Therefore

k < 0 and _ > I ,

X*(¢) is - ".

(k = 1,2,...,n)

X*(e) can be made



Property 4

If e < ¢* then

49) ¢ < ¢* • ¢ +
C

and the optimum solution associated with

approximation R4_) such that

X*(¢)
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yields a rational

(IO) I• k_ f(zk) " c

Proof: Let (A*(e), B*(e), k*(e)) be an optimum solution of program

48) for • < e* . Then

gk(A*(¢), B*(e), ¢) • _*(e)

411) $n+k(A*4¢), B'4¢), e) • k*(e) (k " 1,2,...,n)

- g2n+k4B*(e)) • - c .

Let

M

N

j-O

P*<_)
R_4_')- --:- .

Q*Cz)

Then 411) yields

-'*(;k>+YkQ*('_)" 4¢ + _ )Q*(zk) < o

P*4z* k) - YkQ*4z' k) - 4¢ + _*(e) )Q.(Zk ) ,_ 0
Q*(;k)

- Qc*(zk)s-c

(k - 1,2,...,n) .
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There fore

and

R*C 'R)" Yk ' +

, (k = 1,2,...,n) .

Hence we have ¢ < ¢* $ ¢ +'_""_ •
c

At present, a better lower bound for e* than • has not been

found when e < ¢* • The above approach also fails to give upper and

lower bounds for ¢* when ¢ > ¢* , since by property 3, k*(¢) is

- _ in this case.

§3

As was observed in the previous section, if ¢ > ¢* then program

(8) has an unbounded optimum solution. This difficulty can be avoided

by considering the dual program of program (8), since, by the Duality

Theorem, the dual is infeasible when e > e* . In this case an upper

bound for e* as a function of e can be obtained.

(12)

The dual program statement follows.

_Minimize wy

subject to the constraints,

and

u > 0 , v > 0 , w > 0 .

= (O,O,...,O,-1)
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Normally, n is much larger than M + N + 3 and the dual program

will be solved in preference to the primal problem.

We consider the following modification of program (12), which can

be used to test the feasibility of (12)•

M N

Minimize _ " _ _i + _ u. + 7
i-o j-0 J

(13)<

subject to the constraints,

(u,v,v,_,,_,5) e -:_ {
-e _ 1
o q o
I0 .... 0

01 .... 0

0 ..... 1

and

+ ¢ % q o

o q o

0 0 0

0 0 0

u>O , v>O , w>O , _ >0 , v>O , 7>0 ,

= (o,o,...,o,1)

where _ is 1 x (M + 1) , _ is 1 x (N + 1) , 7 is 1X 1

unknown row vector, respectively. The addition of the above identity

matrix provides a starting basis and ameans for detecting whether or not

program (12) is feasible, and hence whether or not ¢ > ¢* . The follow-

ins group of properties of w* , the optlmum value of _ in (13), shows

that there is a feaslble solution of program (12) if and only if _* - 0 .

Since n m 0 , n* is always finite•
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Property 5

Program (13) is feasible•

Proof: (u, v, w, _, _, 7) " (0, O, O, O, O, 1)

of program (13).

Property 6

_*(¢) is finite•

Proof: In the feasible solution given in Property 5,

rr > 0 , since b > 0 ,

Property 7

> 0 , and 7 > 0 •

t >_*(¢) _ 0 .

is a feasible solution

w*(¢) - 0 if and only if e $ e* . When e > e* and

Also,

argument is reversible and hence by Property 3, e _ e* . Therefore

_*(e) - 0 if and only if ¢ _ e* .

In order to prove the increasing property of w*(e) , let ¢ > e*

and consider the following dual program of program (13).

Maxlmize p

subject to the following constraints

0 000 0
! 11o .... o • • •

• 0 0 0

• $ • •

• • • • •

0 ..... I 0 0 0

0
0

0

1

1

I (M+N+3) l's

such that (_, v, 7) = 0 (i.e., n*(e)=O ) . If w*(¢) = 0 , the above

is feasible and hence there exists a feasible solution of program (13)

Proof: If • _ e* , X*(¢) > 0 and is finite. Therefore program (12)

0 < w*(¢) < 1 , then w*(e) is a strictly increasing function of e •
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Maximize p

subject to the constraints,

P(Z'k ) - YkQ(Z' k) + cQ(Z'k ) + O <0

-' " _k-P(z k) + ykQ(Z k) + eQ( ) + 0 _ 0

(14b),

q(_k) < 0

Ai '_1

B. _I
J

(i - 0,1,...,M ; J = 0,1,...,N ; k - 1,2,...,n) .

Let p*(e) denote the optimum value of p . By the Duality Theorem,

p*(¢) " n*(¢) . We now show that p*(¢) is a strictly increasing func-

tion of ¢ when ¢ > ¢* and 0 < p*(¢) < i . First observe that

p*(¢) > 0 if ¢ > ¢* . This follows from the fact that program (12)

does not have a feasible solution if ¢ > ¢* ; if program (12) is not

feasible, w*(¢) > 0 for program (13); thus p*(¢) > 0 for program

(14b). Next observe that Q(_) < 0 for all k if p*(¢) > 0 . For

that 0"(¢) > 0 and Q(_k ) - 0 for some k . Thensuppose

P(_) + 0 • o , -P(_) + 0, o . This imlies that 0 • 0
-=D

fore 0"(¢) _ 0 . This contradiction proves that Q(z k) < 0

Now let asterisks designate values corresponding to an optimum solution.

Then for A¢ > 0

.# .=_

P*('k) - YkQ*(_k)+ (_ + AOQ*(zk) + 0-(o - A_Q*(_"k) ,_0

and there-

for all k .
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Therefore if we choose

then (A*(¢) , B*(¢) , PCe + A¢))

Therefore p*(¢ + A¢) _ p(¢ + A¢) .

0 < p*(¢) < I , p(¢ + _e) > 0*(e) •

thus

al function

satisfies program (14b) for ¢ + A¢ .

Since Q*(_k) < 0 for all k and

Hence D*(¢ + A¢) > 0"(¢) and

_*(¢ + _¢) >_*(¢) when e > ¢* and 0 < 0*(e) < I .

Property 8

When e > e* , the optimum solution of program (13) yields a ration-

R(_) - P(_)/Q(_) such that

(15)

Hence

,-.e

Q(Zk) < 0

and If6"k)-R(z_)l,, +_ (k-1,2,...,n)
Q(_'k)

(16) ¢* • ¢ + Min
k Q(_k )

Proof:

(17)

*, Q*cQ+cQ*CQ* ,o

holds, where
M

N

= r B.Q. (z k)q.(_'k) *
jl 0 _ _

and A* and B* are obtained from the inverse of the optimum basis of

program (13). Remembering that Q*(z_k) < 0 when ¢ > ¢* , divide (17)



by Q*(_'k) . Then

X*(Z*k) " Yk + ¢ + *'_ > 0
q*(_'k )

"R*(_k) + Yk + e + _ > 0

Q*G k)

where R*(_) = P*(_)/Q*(_) . This yields

q*(_k ) Q*(z k)

e + _*(_)

MinkQ*(_k )
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(k = 1,2,...,n) .

§4

• In §2 and §3, linear programs have been introduced whose solution

enables upper bounds for ¢* to be obtained. Using these bounds, a meth-

od for iterating on ¢ is developed. Program (13), whose solution is

always finite, is solved for a given value of ¢ . The corresponding

value of w*(¢) indicates whether ¢ > ¢* or ¢ _ e* , by property 7.

If e > e* , a better upper bound for e* t_an ¢ is given by property

8. If • _ e* , program (12) is solved and a value of I*(¢) is ob-

tained by duality, and property 4 gives a bound for ¢* . The new value

of ¢ is then chosen as the mid-point of the interval containing c*.

When ¢* has been approached to within the desired precision, the opti-

mum solution of the appropriate primal or dual program gives the coeffi-

cients of the approximating rational function. In general, it is impos-

sible to obtain the best rational approximation exactly in a finite

number of iterations.
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Method I

(a) Set i - 0 and e0 - 0 .

(b) Solve program (13).

If _*(,i) = 0 ,

If n*(¢i) > 0 ,

go to (c) .

0 for i - 0

set {i = h_i.1 for i # 0

_*(¢i)
and _i = ¢i + Min

k Q(_k )

(c)

Go to (d).

Solve program (12)

If k*(¢ i) " 0 , halt.

been obtained.)

If X*(¢i) > 0 , set

and

(The best rational approximation has

_i l ¢i

x*(¢i)

¢i + c for i - 0
_i = X*(e i)

, . +-- for[Min _i-I ¢x c ! i#O.

tO

Go to (d).

_i + _i
(d) Set ei+l " 2 , increase i by one and go to (b) .

The proof that the sequence {ei}_.O defined by Method I converges

¢* follows.

When w*(ei) > 0 and i # 0 , we have ci > ¢* , and

u*(¢i)
_i " {i " ¢i + Min_.- . _i-I < ci - _i-I

k q_Zk)

_i-I + _i-I

2 " _i-1 = 2
_i-i " _i-I

It can be shown by induction that the interval [{i ' _i ] contains ¢*

by property 8.
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_*(¢i ) = 0 , _*(¢i ) > 0 and i _ 0 , we have ¢i < ¢* and

_i - _i = Min _-L_i_l, ¢i + k*--(ei)_"c ¢i

= _i-1 " 2 = 2
9i-1 " {i-1

It can be shown by induction that the interval

by properties 7 and 4.

_i " _i _ 2
(_i-1 " _i-1 )

_i + _i
and ¢i+1 = 2 '

[_i ' _i ] contains e*

Therefore in both cases, if ¢i _ ¢* '

• Since the interval [_I' _i ] contains e*

(_i" {i)

Ih+1 - #1 ".q)"
2 i+1

Hence [¢i}i.O converges to ¢* . If the first method given in Section

IV of [1] is modified so that Aei+ I = A¢I/2 in all cases, then

co \e0

le*- ¢i+i I • 2-_ • Hence, if _*(0)c2i+l and --2i+i are used as the stop-

ping criteria for the respective methods, then the respective number of

iterations required to obtain a given accuracy will depend on the rela-

• Max
rive values of _*(0)/c and ¢0 " k If(zk) l "

A second method for obtaining a convergent sequence [¢i]_. 0 is now

given• A proof that [¢i]i,0 converges to ¢* has not yet been obtained.

Method II

(a) Solve program (12) with ¢ = 0 , and set

Co) Solve program (13) with ¢ = e. , and set
1

ei+l = ¢i. + Min

k Q(Zk)

eO = _*(0) . Set i-O.
c

(c) Increase i by one and go to Co) .
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t5

In this section a more restricted program than program (7) will be

considered. For this restricted program, both upper and lower bounds for

¢* can be obtained. Since both of these bounds are utilized in construct-

ing the sequence of values of .¢, the convergence to the optimum solution

may be faster for this restricted program. The program is:

-Minimize e

subject to the constraints,

gk(A,B,e) _ 0

(18) _ gn+k(A,B,e) • 0 (k - 1,2,...,n) ,

L -g2n+k(B) •-c

g2n+k(B) • c

where _ is a real number greater than c . The fourth constraint of

program (18) restricts the class of approximating functions. Suppose

c - c , i.e., g2n+k(B) - c ; then program (18) will give the best poly-

nomial approximation. Therefore in the case of program (18), the class

of approximating functions includes the set of all polynomials and is a

subset of the set of all rational functions. It will be noted however

that the fourth constraint might be added implicitly or explicitly in

m

practice because of the finite length of computer words. If c is large

enough so that the best rational approximation is included in the set of

feasible solutions of program (18), then program (18) is the same as pro-

gram (7). If e* denotes the optimum e of program (18), then c* • e*.

The following program is considered, where e has a fixed positive

value.
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Minimize

subject to the constraints,

gk(A,B,e) _ k

(19) gn+k(A,B,e) _ k

-g2n+k (B) • -c

g2n+k (B) _

Some useful properties of program (19) will now be stated.

Property 9

Program (19) is feasible if and only if there exists a vector

such that c _ g2n+k(B) • c .

The proof of property 9 is similar to that of property I.

Property I0

l*(e) is a strictly decreasing function of • . A*(e)

for every e .

Proof: The monotonicity of k*(e) as a function of e

exactly the same manner as in the proof of property 2.

of X*(e) is proven next. First observe that

program (19),

gk(A,B,0) • l*(0)

gn+k(A,B,0) • 4*(0)

Since

0 • X*(0)

(k " 1,2,...,n)

B

is finite

can be proven in

The finiteness

X*(O) k 0 . For from

(k = 1,2,...,n) .

gk(A,B,O) = -gn+k(A,B,0) , by adding the two inequalities,

is obtained. Also, either

gk(A,B,e) = gk(A,B,0) - g2n+k(B) • e

-g2n+k(B) • e or

gn+k(A,B,e) = gn+k(A,B,0) - g2n+k(B) * •

-g2n+k(B) • •

for some k, since 0 • k*(O).
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Therefore

Hence

Thus

1v_ig k (A,B,e), gn+k (A,B ,e)

A*(e) is finite.

Property 11

_,*(e) > - _. • e

(i) X*Ce) > 0 if and only if e < e* .

(ii) X*(e) = 0 if and only if e = e* .

(iii) l*(e) < 0 if and only if e > e* .

Proof:

proof of property 3.

from (i) and (ii).

Property 12

(20)

Proof: Suppose

ted as:

(21)

" g2n+k(B) " •
!

>- C * e

(i) and (ii) can be proved in exactly the same manner as in the

Since l*(e) is finite, (iii) follows directly

(X*(e) s 0)e + _*---_ Ce* '=e + _*(e)
c

e + l*(e) _;e* _;e + l*(e) (),*(e) > 0).
" C
C

Maximize Ae

• > e* . Then l*(e) _ 0 . Program (13) can be formula-

(k = 1,2,...,n)

subject to the constraints,

gk(A,B,e - Ae) _ 0

gn+k(A,B,e - Ae) • 0

c • g2n+k(B) • c

The first two constraints of program (21) will be rewritten as
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(22)

Since

(23)

Let

let

gk(A,B,e) + g2n+k(B) • de • 0

gn+k(A,B,e) + g2n+k(B) • de • 0

(k - 1,2,...,n)

g2n+k(B) > c is required, (22) yields

-[gk(A,B,e)/g2n+k(B)_ _ _e

-[gn+k(A,B,e)/S2n+k(B)! _ Ae

(k = 1,2,...,n)

F be the set of all feasible solutions of program (18) (or(21)) and

Ae* be the optimum Ae . Then

de, = Sup Min [. 8k(A'B'e)
F k 82n+k (B) '

= .Inf Max igk (A'B'e)

F k Lg2n+k (B) '

gn+k(A,B ,e)
- !

g2n+k (B )

gn+k (A'B,e) _

g2n+k(B)

There fore

Inf Max Inf

Z: c

Hence >,*__*_(.e_l• de, • _ >,*(e)
c

Since e* == e - de* ,

e + X.*(e) ,: e* "=e + X*(e) (X.*(e) _ o) .
c

Next suppose e • e* . Then l*(e) _ 0 . Program (18) can be formula-

ted as :

(24)

Minimize de '

subject to the constraints,

gk(A,B,e + Ae') • 0

gn+k(A,B,e + _Ae') • 0

c • g2n+k(B) •
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By a similar argument to that given above, program (24) yields

_e'* - Inf Max gk (A'B'e) gn+k(A,B, e) -]

g2n+k (B) J

where Aet* is the optimum Ae' .

Therefore

Inf
F M_xLgk(A'B'e)' gn+k(A'B'e) _

Inf
F _XLgk(*'B'e)'gn-_(*'B'e)!

C

Hence

Since e* =' e + det'A'

X*(e) <z_,._;X*(e)
- =
C

e + x*__._ _e* ,;e + X*(e)
c

Property 13

The optimum solution associated with l*(e)

approximation R(z) such that

(_*(e)_ O) .

yields a rational

and

_If(_k)"_(_k)l• e +x*_*_zif
=

_Xlf(_ k) - R(Z'k) I • e +

X*(e) _ 0 ,

if %*(e) < 0 .

Proof: Let the asterisk designate the values of the optimum solution as

before. Then by the same argument as in property 4,

l fezk) - R*(l'k) I .=e +
Q*(Z'k )

(k " 1,2,...,n) .
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If e _ e* , then X*(e) _ 0 and

If(_k) - R*(Zk) I _ e + _*(e)c

If e > e* , then A*(e) < 0 and

§6

Making use of the properties stated in _5 , algorithms for approach-

ing e* and the best approximatiug function can be constructed.

Method A

(a) Set i = 0 and e0 - 0 .

(b) Solve program (18) or the dual.

If l*(ei) _ 0 , then terminate.

l* e i) i 0

igi t.(ei)

LMaxi_i l' ei
, i_o

" <l l*(ei)Min_i-i ' ei c
, i_O ,

and go to (c) •

If l*(ei) < 0 , set
_*(e i)

_i =MaxL_i-l' ei +-c

- %*(e i)

_i = MinL_i-l' ei +
c

and go to (c)..
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(c)

Method B

_i + _i
Set ei+l " 2 , increase i by one, and go to (b) .

(a)

(b)

Set i - 0 and e 0 - 0 .

Solve program (18) or the dual. Set

_*(e i)
ei+ 1 = • i +

(c) Increase i by one and go to (b) .

Method C

(a)

_)

Set i - 0 and e0 ffi 0 .

Solve program (18) or the dual.
J

ei+l
I

÷ i 0
k_x

(c) Increase i by one and 8o to (b) .

Property 14

For Method A, limi_,ooei= e* and lei+I - e*]
(_o " _o)

21+1
• i_o .

Proof: Since the interval [_i' _i ] contains e* by property 12,

If k*(e) m 0 ,

]ei+l " e*l _ _i " _i "

2
k*(ei)

_i > el + and _i _ _i-I "

Hence
• k*(ei) q

lCi-1 + _i-lq = _i-I " :i-I
" _i-I " u 2 j 2 "
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zf k*(e) <0 , and _i _ _i-I "

Hence _i " _i _ ei +

_i-I + _i-I

2

_i-I _ ei " _i-I

_i-I " _i-t

" _i-I = 2

Therefore in both cases,

lira N e*
i-" coe i

lei+ 1 - e* I , and hence

Property 15

lim
For Method B,

Proo______f:e0 = 0 • e* and

e. = e* , and
1

_*(eo_.._ 0 .

e* - el+ 1 _ (l/c - l/_)k*(ei) •

Hence eI _ e 0 . By property

12, e i _ e* .

and 12, that k*(ei) a 0 and 0 _ e i _ el+ I • e* for all

lim

[ei}T, 0 has a sequential limit. Thus i-. _ (ei+l'ei) " 0

lira k*(ei) - 0 by construction of el+ I . Since k*(e)

decreasing function of

lim = e* Also,
i- _ ei

It can be shown by induction on i , using properties ii

I . Hence

and

is a strictly

tim ) - 0 and X*(e*) = 0 , we have
• , i-* _ k*(ei

X*(ei) X*(ei)
+ _ = e _ e* • e I + by property

ei _ i+l c

12. Hence e*- ei+ 1 < (tlc - 1/_)l*(e i) •

,era

[ei]i= 0 converges Co e* from below.

Note that in Method B

Property 16

lim
For Method C, i. _ e.l = e* and el+ I

- e* _- (tlc - l/_)L*(e i) •

Proof: e 0 - 0 _ e* and A*(eo) _ 0 . eI = k*(eO)/C _ e* .

By an argument similar to that for property 15, 0 _ e* • el+ I _ e i

lim
i - 1,2, .... Hence_ i_ _ ei _ e* .

for
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X*(e i) _.*(e i)
Also e i + _ e* • ,, + , and

c ei+l ei

hence ei+ 1 - e* < (1/_ - 1/c)X*(e i) .

Note that in Method C, {el}i. 0 converges to e* from above.
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This paper briefly describes the procedures employed in the appli-

cation of inverse estimation to problems in experimental design, shows

how this technique might be applied in the development of guidance

function approximations, and indicates the problem areas that must be

investigated for such an application. _
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INVERSEESTIMATION

I. Introduction

When an estimate of a (vector) function such as

" g(z) (l.1)

is desired, the usual procedure is to select a set of sample values for

, observe the responses x and use this data to estimate the desired

function. However, there are times when the

are at our disposal as independent variables.

more convenient to fit the function

_'s , and not the _'S ,

In this case, it may be

x " f(_) (1.2)

according to some criterion of 'best fit" then, using this relationship,

determine the 'best" estimate of the inverse relationship (i.I). In this

paper, the problem of inverse estimation is considered and some methods

presented.

2. Direct Estimation

The usual problem in response surface estimation is determining

the parameters in the model

where 3 is a (q X I)

variables, and x is a

variables.

form,

= f(_) (2.1)

vector of dependent variables, or response

(p X I) vector of controllable independent

If each element fi(x) of the vector f(x) is a polynomial
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r-i r-I
ff(x) = bio _ + bitx 0 x I + bi2x 0 x 2

r-I r-2

+ ... + bipX 0 Xp + bi12x 0 XlX 2

r-2 r-2 2

... + ... + x 1+ + bi,p_l,pX 0 Xp-lXp billXO

(2.2)

r-2 2 r

bippX 0 + ... + b x+ ... + Xp ipp...p p

and x0 -- 1 ,

We can express each such element as

where the vector x [r]

and

, x[r]fi = - ,

contains elements of the general form

m 0 m I m P
x 0 x I ... xP

(2.3)

(2.4)

m0 +m I + ... +m = r.P
(2.5)

Then model (2.1) can be stated as

3 = B' x_[rl (2.6)

and is amenable to the experimental design methods of Box and Hunter [I]

and Bose and Draper [2].

Having chosen a design, i.e., observation points

and observed the responses,

X. , j = 1,2,...,n,
-3

where

yj =, llj +_ej = f(xj) +_ej ,

¢. is an error vector, we may write the design model as
-3

, [r]'
Xl '=x I B + ¢'-i

Z2 = B+e'• 2

= + et
--n

(2.7)

(2.8)
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or

Y-XB +E (2.9)

where Y is a (n x q) matrix of response variables, X is the (n x m)

design matrix (m determined by r), B is the (m x q) matrix of unknown

coefficients, and E is the (n x q) matrix of error terms. Using the

least-squares principle, B is estimated by _ , i.e., that matrix which

minimizes the trace of E'E . It can be shown that

- [x'xl'Ix'y. (2.10)

In statistical terms, if the error vectors _ei are assumed, as usual, to

follow the multivariate normal frequency distribution,

f(__)-Ivi"I
(_)-_2exp {-1/2_'v'l__!}, (2.11)

and furthermore the _ei are assumed to be stochastically independent,

then the estimate _ is the maximum liklihood, minimum variance estimate.

The covariance matrix V is estimated by,

A 1 {(Y - XB)'(Y - XB)} (2.12)
V- n-p-I

A

An element Vik of V measures the simultaneous "lack of fit" of Yi

and Yk "

For any point x , not necessarily a design point, the response vec-

for _ is estimated by

= _. _,xCr7 (2.13)

and the covariance matrix for this estimate is

_x_[rl' ,x!'ix[rl]Ix v (2.14)
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.

There are times when we want to estimate

pressed in (2.1), but the inverse function,

x = g(3) ,

where, again, the x's

the response variables.

an hourglass. Let tO

The Problem of Inverse Estimation

not the function ex-

(3.1)

are the controllable variables and the _'s are

For example, consider the problem of calibrating

be the elapsed time measured by the hourglass and

t

An estimate of the function

be the true elapsed time as measured by some presumably unerring device.

t = g(t O) (3.2)

is desired. The logical way to approach this problem would be to choose

times tl, t2, ..., tn and at each time, ti , observe the hourglass

time (t0i + ¢i) and then use this data to estimate g(t0) . This is

an inverse estimation problem. Our data reflects a model of type (2.1)

where to is the response variable and t is the chosen independent

variable, yet we want to estimate a function of type (3.2).

Williams [3] [4] discusses the problem of inverse estimation in

the simple linear case and considers the problem of estimating the quan-

tities of two sugars, glucose and galactose, in a solution by observing

the optical density of the solution to light of two different wavelengths.

An estimating function is determined by using solutions of known sugar

content and observing the associated optical densities, the response var-

iables thus being the optical densities and the controllable variables

the quantitative sugar contents.

In the flat earth problem discussed in [5] and the various progress

reports [6], the problem is to determine an equation for estimating the
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optimum trajectory to continue, knowing the instantaneous conditions of

position, velocity, propellant flowrate, and (F/m). The equation is to

be determined from observations of the instantaneous conditions along

chosen trajectories known to be optimum. Characterizing a trajectory by

the steering function X(Co, Cl, c2)

for the observed data is

where w

and the cut-off time tc , a model

_w= f (3.3)

is the vector of observed conditions (x + ex, y + ej, _ + e.x '

+ e , F/m + eF/m) , the ¢'s perhaps in-flight measure-

ment errors, and _ is the vector of controllable variables (Co, Cl, c2,

and tc, the time of cut-off). Since the steering angle _ is a direct

function [5] of "Co, Cl, and c2, it may be feasible to include _ in

the above model as a concomittant variable, creating a model analagous to

the analysis of covariance model familiar to experiment analysts.

From the model (3.3), we want to estimate a working relationship

= g(_) (3.4)

That is, given measurements of the instantaneous conditions, we want to

determine which optimum trajectory we are on and adjust the steering and

cut-off mechanlsms accordingly. One proposed method for doing this is to

generate bundles of optimum trajectorie_ at points along these trajectories

obtain values for w ,and then fit the model (3.4) by, say, a least squares

procedure. Here, w becomes the vector of independent variables and

the vector of response variables when, in fact, their true roles are just

the opposite.

Since the vector E is not controllable, the choice of trajectories

and observation points on these trajectories becomes a matter of personal

judgment rather than a matter of mathematical choice. In the direct
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estimation procedure discussed in the previous section one generally

chooses design points such that the matrix in (2.10) is easily inverted,

the estimates in (2.10) are relatively free from interaction and corre-

lation with one another, and the covariance matrix in (2.14) satisfies

some specified criterion. However, if the variables considered indepen-

dent are not actually controllable, we are not free to choose points that

satisfy these criteria.

Therefore, the question arises as to whether or not it may be better

to fit the model (3.3), where the vector _ is controllable, by direct

estimation and then solve (3.4) by the inverse estimation techniques of

the next section.

4. Determining the Estimates

Given the linear model

- _ + _ = B'_ +E (4.1)

A A
we can determine the estimates B and V from observed data. The esti-

mated liklihood, then, is

exp {-I/2[e'_'le]} (4.2)

(2n)n12 - _

If we wish to estimate x from an observation of
A

where e = _ - B'x .

, Williams [3] suggests that a reasonable criterion would be to choose

the x that has minimum estimated variance, or that maximizes the esti-

mated likelihood. From (4.2), we want to choose the

the quadratic form

x that minimizes

(4.3)q = (Z' - x_ .

Differentiating with respect to x , we get,

I

/
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AA-1A,A AA- 1
BV B _ - BV _ = 0 . (4.4)

Henceforth, we shall disregard the carats and it will be understood that

B, V, and x refer to the estimated quantities.

Solving equation (4.4) we find that

" [BV'IB']*BV-Iz , (4.5)

where the conditional inverse [BV'IB']* is defined by

[BV'IB '][Bv'IB 'I*[Bv'IB'I = [BV'IB'] . (4.6)

If [BV'IB] is non-singular, then x is uniquely determined and

[BV-IB,], . [BV-IB, ]-I .

Note that if _ is (p x I)

matrix, and, further, if B

" B"IvB'IBv'I_ " B"I_ (4.8)

(4.7)

and x is (p x I) , then B is a square

is non-singular, (4.5) reduces to

Writing (4.5) as

_x- G_ (4.9)

we see the estimated variance of x is
B

V(x) - GV(z)G' (4.1o)

and V(X ) can be determined from (2.14).

If the model is extended to include terms Of higher order, i.e.,

or

Yi " r,jbijx j + JTk_ bijkXjXk + Jrkr iTbijklXjXkXl +

X = B' xIt7 + e

... +e.
1

(4.11)

then the minimum of the quadratic form is not as explicitly determined

since the equations 5Ql_x will include non-linear terms in the x's .

There is, however, a relatively simple iterative scheme to determine the

minimum.



218

We can linearize (4.11) by redefining the variables as

zI = x 1

z 2 = x 2

. •

• •

Z m X
P P

Zp+ 1 = XlX 2

Zp+ 2 = XlX 3

r
z m x
m p

(4.12)

(4.11) becomes,

y= B'_z + e,

and the problem now is to minimize,

Q = (y' - z'B)v'l(y - B'z) ,

(4.13)

(4.14)

subject to the constraints,

Zp+ I = ZlZ 2

Zp+ 2 = ZlZ 3

r
z i z
m p

(4.15)

Using the method of Lagrange multipliers, we derive the set of equations,

pXp

_×p
sXp

where the matrix

a matrix of zeros, I

Cpxs o× z

DsX s IsxlJ mIsx s Osx

BV-IB ' has been partitioned into

is the identity matrix, z

u _, Zp, Z)1
u 2 (Y)

u3(_>

(4.16)

EA;IC' , 0 is

is the vector of
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primary variables x i, x2, ..., Xp, zI

iables, i.e., the higher-order" terms, _l

is the vector of secondary vat-

is the vector of Lagrange mul-

tipliers, HI is bilinear in 1 and z but linear in X , H2 is- -p

linear in X , and H3 is the right-hand side of (4.15). Equations

(4.16_ can be solved iteratively by the following procedure:

[=p,k
I

Zs ,k =

--A-I
pXp Xs "A'ICpxs--

0sXp 0s× s IsX s

.C,A,-I
sXp Isxs C 'A'Ic-D

_l,k-1

_2,k-I

H3,k-i

Since

_3_

 l,k Ul -l' z

H2,k " U2,k-l(Z)

!

=3.k[ u3_,k-l)

H2,k is invariant with respect to k and z-s,k

(4.17) can be reduced to the set of m equations

Z) " A'ZCu3(_%,k.l)

- -c
Ul_-_. 1

(4.17)

is identically

(4.18)

' _'p,k-l' y) + u2(x) + [C'A'Ic " D']u3(_-p,k-l)

5. Discussion

If the inverse estimation procedure were used in the flat earth prob-

lem, we would first determine the relationship (3.3) using experimental

design techniques with, say, a Runge-Kutta method to generate the response

, Then,variables from the controllable variables cO Cl, c2, and tc .

in applying our model, we would measure the response variables x, y, _,

Y, u, (F/m) in flight and, using the procedure of (4.18), estimate the

values of cO , Cl, c2, and tc that would have given us this observed

response.
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On the surface this approach seems to be a logical attack on the

problem. However, there are several critical questions concerning equa-

tions (4.18) that must be explored. The most obvious ones concern compu-

ting time, computer storage requirements, and the variance of the estimates

obtained. At this point these questions have not been explored in detail

but a first glance at the equations involved yields a first approximation

answer of too long, too much, and too great for in-flight calculations

by an on-board computer. Therefore, the difficulties in applying the

results of this inverse estimation procedure might nullify the simplifi-

cations obtained in the direct estimation problem by the application of

controllable experimental design.'
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#,¢#f
A technique for obtaining a function which yields an error, in

the sense of least squares, that is less than a specified tolerance

is developed. _ __

I. INTRODf_"YIC_I

In EI] , a recursion process was developed for obtaining the

coefficients _, _, ... , AR of the function AO_O(_) + _i(_) +

- - - + _(_) _uohthat

n NE. _ _)-_ Aj_j(_i)
i=O J,,O

is minimum. This scheme yields the coefficients of the approximat-

Lug function without having to solve the normal equations. Of

course, the least squares procedure minimizes the sum of the
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squared errors, yet we have no assurance of the relative size of

this error. In this paper, we will develop a process for choosing

the approximating function in such a fashion that the error will

not exceed a given tolerance.

_efore doing this, let us examine more closely the error E

incurred by using the function

N

j=0
Ajc0j(_) as an approximating

function. If the vectors , ' "'" ' _N' N < n, are used to

obtaintheconectloneo, e-I,...,_ ofo_honor_lvectorsas

in E I__ , then the error E can be _ritten as follows:

m I

n r N .-,2

i=o j=o

2 N 2

•.. - A,-_II " !1_- z (_, _j) _j II
,.1..o

I

2 N N

N 2 2 N 2

j--o j=o

From this representation of E, _ are able to observe the

follo_Ting:
2

l) ]1 _ ]1 is an upper bound for E.
2

2) A sum of any k of the N + i terms (_, _j) , 0 < k <N + i,
!

_rlll yield an error E" > E.

3) If_+ I is any other non-zero vector orthogonal to each

2 N+I 2

of eo, el, ... , _, then !I_ II " J=O_ (_' --eJ) <E.
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If. SE_ON OF THE FUNCTION

2 N 2

After evaluating II_ II " E (_, -- we may find that
J=O ej) ,

this value still exceeds a given error tolerance 6. Then _

wish to find _+i such that

2 N

j=o

2 2

(_, _j) - (_, _+I) < Sl

i.e., find c--_+lsuch that

2 2 N 2

(_, %,.1) >ll_ II - _ (_, _j)
j:o

-S,

w

where e_+ I is the vector associated vith _N+I that is orthogor_

- _i'to eo_ ,e, , •

Suppose we let

c-%+I = (XO,_l,...,_n).

Then

!

n

(Xo,q,...,xn)- (z xieoi)_o" "'"
i--O

n

-(z _i %i) _,
i=O

if _j = (ejo, ejl, ... , ejn), J = O,I,...,N.

Therefore,
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n n

(Xo,_l,...,x,,) - ( z _,_.eoi) eo - ...- ( z _'i %i )
i=O i=O

l_.z=oxi " (i=oz_.,,eo_) - ... -(i=.oZx,. Nil

and if _ = (to,tl,...,tn), then

o o ,, f
,.1

i i i t IlL , II U I " I I

= n _ n 2 n 2

i=O i=O i=O

Thus, to have

2 2 N 2

(_,_.z) > II _ II - _ (_,_j)
,:l,,o

- 5,

we must have

n n -.2

[ [, _ _-(_ _ "oa(_,_o)"..." (_ _ _,_)(_,_)_I->
i=O i=O i=O

n 2 n 2 n 2q [ 2 N _j)2 ][ _ ;,,.., - ( z _ e_) - ,.. - ( z _ eN:,.)j II _ II - z (_, - 6 ,i i=O i=O J=O

or

[_ _,_ct_-(x,Zo)"o_""-"(x,_)_i >

n 2 n 2 n 2 t2 N )2

or

\
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2

. .... (_, _) %_

n . (_, _o) eot .
+ 2ki kZ=Okk (tl

k>i

... - (_, _) _}(tk

ooe

- (_, ;o ) eo_-

. (_, ;.) _,,_
n " 2 2 2

....0
E>i

2 2

- X i eNi

n

k>i

112 N 2

3=0

or

n 2

_ {c_-(_,_o)"=""'"

N 2 2 ..... 2

j=o

N 2

- z (_, ;j)
J=O

2 2
- c II_ II -

-5]+. • .+

%1 [II_ II z (_,;3) " _] . _ 2 z }_ [t_- (_,_o) eo¢- k=0

3=o k>_

.... . (_,_) _ {t_- (_,_o) _o._.... " (_'_) _ *
t_

_ 2 N 2 n
". " k-K)

J=O k=,O k>i
k>i

> O,

If we let
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,t -.. - °-'o)

÷

2 2 _ )2- ... - (_, _) %i} - [ II_ 11- _ (_, _j - 6]
j=o

2 2 N 2

eo_Cll _ Ii - _ (_, _j)
j=o

2 N 2

- _ + - " - + %i c I!_ I! - _ (7, ej)
j=o

6} }, az_a.

n

.Bi = 2 _ xk {t i - (_,e-o) "or

k>i

2

•.. - ¢_,_} %-k} " c li _ II

n

... + z _k eNi _} } '
k=O
k>i

we can write this inequality as

this inequality is satisfied if

2

_ ki + Bi ki = O,

- ... - ¢_,_) %i} Ctk- (_, ;0) eOk-

N 2 n

-,_ (_, _j) - S} { _ kk eel eck +
j_o k=o

_>i

n 2

¢& _.,,.
i=O

+ Bt _i) > o,

for i = 0,I,...,n. Notice that these conditions are much stronger

than are necessary an& we will need to examine some cases that

might arise.

Case I: If Bi _ O, for all i, O< i < n,

-Bi

choose ki = V "

Case 2 : If Ai> 0 an_ Bi = O, for some i,

O< i < n, choose ki = i.
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C_s___e_3:If Ai <0 and Bi = 0, for some i3

O_< i_<n, choose Ai

2

(Bi. l)

_>_._A_.i

--2

satisfying

2 2

_en (Bi. I) - _i-i Ai _i >--O, a,_ _ _e

assured of a solution Ai-i to the equation

2
Ai-I _-i + Bi-i Xi-i + Ai _i = 0.

Notice that the left side of this equation

is Just the sum of the ith and (i-l)st terms
n 2

of the sum _ (Ai X_ + Bi All. Since Ai < 0,
i=0

no difficulty is encountered in choosing Ai

to satisfy

2

(Bi.I)

..___._._ A_,

if Ai. I> O. If Ai. 1 < O, then we must note

that Bi.1 is a function of Ai' and we must be

careful in the choice of li"

2

(Bi.I)

But 2 has a minimum value at its only

critical point, hence _-m can choose Ai

2

(Bi_l)

V >

such
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By
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I. E. Perlin, and J. H. MacKay

SUMMARY

A method is proposed for the least squares fitting of a polynomial to

data with applications to fitting solutions of the guidance equations. This

method depends on restricting the class of polynomials (balanced polynomials)

as well as on solving the guidance equations at certain sets of points.
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The problem with which we are concerned is that of approximating a real

valued function of several real variables given a collection of points in the

domainof the function and the corresponding values of the function at these

points. Furthermore, weare considering a polynomial approximation of the

function and are assuming the least squares criterion for the best approxima-

tion. Theoretically, then, our problem is easy --simply use the polynomial

of the chosen degree with the least squares estimates of the coefficients.

However, from the practical point of view the problem is not so easy. Actually

finding the least squares coefficients maybe an almost impossible task when

one is fitting a polynomial of several variables and modest degree. The inver-

sion of the coefficient matrix of the normal equations is the usual problem.

The general methodsfor finding the least squares coefficients can be

divided into two major categories--those which apply for arbitrarily chosen

data points and those which dependon somespecial arrangement or design of

the data points. The methodsthus far proposed for arbitrarily chosen data

points do not seemsubstantially to reduce the calculational difficulties from

those of inverting the coefficient matrix of the normal equations. However, if

one is willing to allow any apriori design of the data points, it is possible

to have a design which will yield an easily invertable coefficient matrix.

There is, of course, a middle ground between that of no restriction on the

arrangement of data points (design) and that of the very severe restrictions

needed to produce an easily invertable coefficient matrix. It is in this area

of moderate restrictions on the design of the data points that wehave had some

success. Weshall call our design of the data points a rectangular design. In

the statistical literature this design is called a factorial design.
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By using a rectangular design and a special form of polynomial called a

balanced polynomial we have been able to calculate the least squares coefficients

with a considerable reduction in calculational difficulty in the sense that

several lower order matrices are easier to invert than one of higher order.

The process by which we calculate the least squares coefficients will be called

the step procedure.
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II. RECTANGUIARDESIGNS

Supposethe domainof the function to be approximated is a subset of

(x(1) x(X)x-dimensional Euclidian space. Let , ... , ) be a typical point

and define

= <x (i) = i, Ti , _ x if t _ si}
Di ti : ti "'" ' xt i si i "

Then the-Cartesian product

D l x D2 x ... x Dx = D

will be a subset of x-dimensional Euclidian space.

design to be any such D . Note that the T. 's
1

x(i) need not be equally spaced.
t.

1

We define a rectangular

need not be equal and the

Step Procedure: The step procedure is most easily explained by an

example. Let us consider a function of two variables, f , and consider an

approximation of f by means of a second degree polynomial. Denoting

f(u,v) by y we have

y = (all +a21 u + aslu2) + (ale + ae2u)v + alsv 2

Suppose the data is in a rectangular design, say

D = D l x D a , D 1 = (u I , ... , Un) , Da = (v I , ... , Vm)

then we may use the step procedure to find estimates, not necessarily the

best, of the a's The procedure is as follows:

i. Hold u fixed at say u i and define bil , bi2 , bis by
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and consider

= a + + a u. 2
bil 11 a21ui sl i

b. = a + a u.
12 12 22 i

bis = als

2

Yij + bi2vj + b v.= bil is J

2. For each fixed i find the least squares estimates of bil , bi2 , bis

3. Using these estimates as if they were observed values of

all + a21u i + a22u2i ' al2 + a22u i ,. als respectively find the least squares

estimates of all , a21 , a22 ; al2 , a22 ; and als .

Note that instead of a 6 x 6 matrix inversion as in the case of finding

direct least squares estimates of the a's , we were only required to invert

several smaller matrices of maximum size 3 x 3 . We could also have written

the polynomial approximation as

y _ (all + al2v + alsv2) + (a21 + a22v)u + aslu2

and used the procedure just as well. The estimates of the a's in this case

would, in general, be different from those found above.

th
It is not difficult to show that in a general n degree polynomial of

variables the estimate of the coefficient of the highest power of the variable

which appears in the first step of the step procedure is indeed the least squares

estin_te. We shall denote this result as theorem 1 . In general the estimates

of the other coefficients do not have this property.
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III. BALANCEDPOLYNOMIALS

As motivation for considering balanced polynomials, think of expanding a

function of _ variables, x(1), ... , x(_) , in a power series in x(_) and

+ 1 terms; i.e., a polynomial in x(_)approximate this by the first L of

degree L Nowexpand the coefficients of this polynomial in power series
t %

in x t_-l) and approximate these series by their first L + 1 terms.
K-l

Continue this process until all the variables have been used. Note this yields

a polynomial in x (1) x(_), ... ._

general polynomial of this degree.

we have the balanced polynomial

of degree LIL e ... L which is not the

L1 = 2For example, if _ = 2 , = L2

(a11 + aelu + aslu2) + (al2 + a22u + as2u2)v + (als + a2su + assU2)Ve .

This polynomial is a fourth degree polynomial in u, v but the u4, us , v4, vs ,

uSv, vSu terms are missing. Notice, however, that all the terms of the general

second degree polynomial are present. So if higher degree terms are not objec-

tionable, it would seem that if a general polynomial in _ variables of degree L

provides a reasonable approximation, a balanced polynomial in _ variables with

Lj _> L would give an even better approximation

In general a polynomial of the form

LI+I L +i

_I) (_) _i) (i) _.-i7 ... 7 a_ ..._ x ... x_ , x = (x ) l

_I=i _ =i 1 _ 1 _ i

will be called a balanced polynomial. We show in theorem 2 that the step pro-

cedure applied to a balanced polynomial over a rectangular design will yield

the least squares estimates of all the coefficients.
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IV. PROPERTIES OF RECTANGUIAR DESIGN AND BALANCED POLYNOMIALS

dth degree polynomial in the _ variablesConsider the general

x(l) x(_) which we shall write as

(1) all...1 + "'" + al...i...lX[ i)'+ "'" + (terms in x (1), ... , x(x) of degree

< d) + d

We shall call x (_) the leading variable. Clearly this general polynomial may

be written with any x(i) as the leading variable but in what follows we shall

be concerned with the specific form of the polynomial in (1) and thus the leading

variable will be x(_) If we use such a polynomial to approximate a real

valued function f of _ variables x (z) . x (_), .. , ; we have the following

result.

T_OREM l: In the case of a general dth degree polynomial in _ variables

the step procedure over a rectangular design yields the same estimate for the

coefficient of the dth power of the leading variable as the least squares

procedure over the same design.

Before presenting a proof of theorem 1 we shall exhibit an example which

shows that theorem 1 is best possible in the sense that in general the step

procedure estimates and the least squares estimates of the other coefficients

do not agree. In particular this will justify the use of the specific form

of (1) and the "leading variable" terminology.

Consider the general second degree polynomial in two variables

u 2 + (al2 + a22u)v + a v 2all + a21u + as1 is
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as an approximation of a real valued function f of two real variables u,v .

Let YiJ -- f(ui ' v j) and thus suppose the expected value of Yij given by

E(Yij) a22ui)v j v2-- all + a2lu i $ a31u.21 + (aim + + aim j

or in vector-matrix notation

E (Z) = x

where

Yl2

Yla

Y21

" Y22

Y2S

Y31

Ys2/
kYss_

a =/a_1 \

a Sl

_a 12

x = [1
1

1

1

1

1

1

1

U 1 U 1 UlV 1 V 1 V 1

2 UlV2 V2 2U I U I V 2

u_ u_ u_s vs v#
2 V 2

U2 U2 U2Vl Vl i

U 2 U_ U2V2 V2 V_

2u2 u2 u2vS vS v_
2 2

U S U S UsV I V I V I

2 2

U S U S UsV 2 V 2 V 2

,2 US % 2U S U S V S V_

for i,j = I, 2, 3 .

The least squares estimates of the coefficients may be found by solving the

normal equations [1]

X' X a = X' Z
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if in our example we consider the rectangular design

the normal equations become

/ 9
0

6

0

-5

o 6o_3
o\6 o -2 o

0 6 0 -2 i_ )-2 0 i0 0

0 -2 0 15 -21/

/0 i0 0 -21 51

fall

a21

asl

al2

a22

al3

'IT_esolution of this system is

1

-1

1

2

-2

\
1 1 1 1 1 1 1 l_

-i -1 . 0 0 0 1 1 1

1 1 0 0 0 1 1 1

0 -1 0 0 0 -2 0 1

0 1 -2 0 1 -2 0 1

/0 1 4 0 1 4 0 1

Ylz\

Yz2'
Yls

Y21

Y22

Y23

Y31

Ys2

y33)

1 - 18 7. Yz 18 7, )
all = 5-_ ( h8 7'i Yil + 30 7.i Yi2 + 21 7,i Yis J" j J" Ysj

a
21

1 - 18 7, - 18 7, + 27 7, Yl + 27 7, )a3_ = _ ( -18 7 Yi_ Yi2 Yi3 . j Y3J
i i i 0 J

a
1.2

a
22

l -6 +3 )
= 2--8( - E.yzj +E. Y3j + 6 yz_ - 3 Y_3 Y3_ Y33

8 8

1
-- 5-_ ( -3 Z Yil - 9 7. Yi2 + 12 7.Yis )

i i i

1
als = 5-_ ( 3 7,Yiz - 9 _. Yi2 + 6 7.Yis )

i i i

Now consider the same design and use the step procedure to estimate the coefficients.

Thus, write the polynomial as

b + b v + bv 2
1 2 3
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where

b = a + a u + a u 2

1 ll 21 S1

b -- a + a u
2 12 22

b = a

s is

For fixed

bei = a12

i find the least squares estimates of bli = all + a21ui + aslu_ '

+ aeeu i , bsi = als We obtain the normal equations in v alone:

(V' V) b = V'-i Yi

 here(!vlII Ibli v . v_ v_ , b__-|b_
vs v2s \bsi/

The solution of this system is

Yi

Yil_

\yi_/

bli

b
2i

b
si

-- Yi2

1 1 2

= - _ Yil " _ Yi2 + 3 Yis

1 1 1

= _ Yil - _ Yi2 + _ Yis
• (i-i, 2, 3 )

The second step is to treat the u's as observations on the polynomials

aii + a21u + aslU2 , aal + a22u , als and find the least squares esti-

mates of the a's . For b I the normal equations are

where

(u_uI)__I : U_b_l

i u I u I [

= U2 U2 _ = 21

U U 2

s s \ Sl

b
--1

\ iS1
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The solution of this system is

all --- bl2

1

= -- (b11 + ba21 2 is

1
_- _ (bll+ t13)asl 2 bl2

= Y22

- 21 (Y_2+ Y32)

= A(y_2 +y3_ ) -2 Y22

In the case of b 2 the normal equations are

(u_u2)a2 = u_ b__,

where

U2 llull= 1 u2 , a 2 =

1 u3 \a22

, b_2

The solution of this system is

3

i 7, bl i =
a12 = _ i=l

_i - 27 Z + 36 7, )( - 3 7,Yi_ Yi2 Yi3

i( h -b ) -- 1a22 -- _ 13 11 _ ( - Y31 - 3Y32 + 4Y3s + Yll + 3Y12 - 4Y13 )

Note at this point that none of the step procedure estimates agrees with the

least squares estimate.

Finally consider b3 and the normal equations

where

<u_u3)h = ul h

a = a b
--3 13 _ --3

<bsl 1
= b32

bss
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so that
3

7b
J=1 sj 1

als = 3 - 5-_ ( 3 7"Yil - 9 _Yi2 + 6 7_Yis )

which does agree with the least squares estimate of a
13

Thus, we see that the step procedure for estimating the coefficients of a

general polynomial over a rectangular design is not equivalent to least squares

estimation over the same design. However, in theorem 2 we shall give condi-

tions sufficient for the equivalence of the two procedures. We now present a

proof of theorem 1 in the case d = 2 , _ -- 2

Appendix B. )

Consider the rectangular design

o
and the polynomial

(For the general proof see

; De = < Vl J V 2 , V s

(*) (all + aalu + aslu2) + (al2 + aa2u)v + al3v2

written in preparation for the first step of the step procedure as

bI + bay + bsv2

where b I = all + a21u + aslU2 , b e = al2 + aeau , b s = azs Let

Yij = f(uivj) where f is the function to be approximated by the polynomial (*)

If we can demonstrate that the step procedure estimate of als = bs is a

linear combination of the components of X'_ , using the notation of the example,

and show that such an estimate is unbiased; then the step procedure estimate is

the least squares estimate. (See Appendix A)
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Since the first step of the step procedure is a least squares estimation,

J%

the step procedure estimate of b s , b s , is unbiased. Furthermore,

A

that is, bsi is a linear combination of

Z Z
j Yij ' j vjYiJ

J

for each ifor each

dure gives

i . Since b = a
3i IS

3 #%

i=x si

3

a_ the step procedure estimate of als .

and this estimate is a linear combination of

v_YiJ

the second step of the step proce-

A

Clearly this is unbiased if bsi is

77 77 77 2
i j Yij ' • vjYij ' vjYijx j i j

However, the components of X'[ are

7. 7. Yij ijT.uiYij , 7. 2 7. _ , 7. 2' uiYij ' ij uivjyij ' vjYij I_ vjYiji j _ ij ""

so that the step procedure estimate of als is a linear combination of these

components, specifically of the first, fifth and sixth. Thus, the proof is

complete for this special case.
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If we are willing to restrict ourselves to balanced polynomials, we _ay

use the following result•

THEOREM2: The step procedure when applied to a balanced polynomial

approximation of a real function of several realvariables over a rectangular

design will yield the least squares estimates of the coefficients.

Consider the special case of a balanced polynomial in two variables each

with maximum degree 2 ,

(a11 + a21u + aslu2) + (al2 + a22u + aseu2) v + (als + a2su + assu2) v 2

as an approximation of a real function

rectangular design

f of two real variables u,v over the

Let Ytlt2 = f (utl, vt2) ; tI = i, 2, 3 ; t2 = I, 2, 3

First we shall consider the least squares criterion for estimates of the a's

and generate the normal equations ; then we shall show that the step procedure

estimates of the a's satisfy tBe normal equations and are, therefore, least

_quares estimates.

Define S by

S
= Z Z Ytlt2- Z Z a_l_?tl vta
t l=l t2----i _2----i _l---1

and calculate
(%iCz2

• Setting this partial derivative equal to zero,

we arrive at the equation
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S S 0_i- 1 a2-1

tl=l t lYtlteUtl Vts

(_)

Now employing the properties of the rectangular design we have

S S GI-I C_2-i

z u vtl=l t zYtlt--tl t e

s s f s _i-i _I-i s ,e2-,, ul-1 ]

= Z Z. a_ _ J( 7. ut u t )(.7. vt vt )7 "

_i=i _2=i i 2 _ tl=l i i t2=l 2 2

We shall define the matrices U,V as follows

U

i ul i vlvl
2

U 2 U22| V = V 2 V 2

Then clearly
s _l_l _i_i
7. u u

tl=z tl tI

is in the _l' C_l position of the matrix U'U

s 12-i _2-i
Similarly for _ v v

t2= I t2 t2

Thus define

7. u u

t =i tl tl
1

s _2-i G2-i
= Z v

V_2G2 t =i t2 vt2
2

and (4) becomes

S 3 G I -i 52-1 S S

(5) _ _ Ytlt2 = _ _ A_I_2 U_IGI V _2G2=i t =i Utl vt2 _ =i
_i 2 i _2=I

Equation (5) is a typical equation from the set of normal equations.

We shall now use the step procedure to estimatea coefficient, A
SlS 2

in order to facilitate the writing down of this estimate, we shall have
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need of the following notation. Let

(uqs_) = (u,u)-_

(/_s_) = (v'v)"_

and note u

is

- I, 2, 3 s = i, 2, 5

_e = i, 2, 3
s e = i, 2, 5

rl is in the _l, rl position of U' and similarly for v _2"I

r 2

The first step of the step procedure for finding an estimate of A

SlS 2

A(_) = (V'V)-_V'_t
tls 2

1

Z Z v v
r2=l _2ml r 2 Ytlr 2

where ytl = ( ytl 1 , ytle, Ytls )

step is then

• The second and in this case final

= (u'u)-_u'a(_)
Asls2 s

e

Z Z _ Islu a(I)
rl=l _l:el r I rls a

s s _zsz _z-z s s _as 2 _a_ z- Z Z u u l Z v
rl=l _i__I r I v

• rlsl _2=I r e Yrlr 2

Using the fact that we have a balanced polynomial over a rectangular design

we may write

= S S { S S u_iSl _2S2 21.i _2_i }
ASlS 2 _' _' Yrlr2 Z Z V U v

rlSl r2=l _i--I _2=i r I r 2
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If we substitute A
SiS 2

becomes

for
A_l_2 in equation (5), the right hand side

S S

Z Z A V

sx=x s2=x sxs2 Usxoc x smog.2

7, 7, Yrl r 7,
rl_l r2=l _i =I

s _x,x _2-i s _isx s _2s2
Z 3(Z u Usa)(Z v Vsa)]

[url Vr2 Sl=l i I s2=l 2 2
2 _I

However

s _ s

Z U x m U_ a = 5_ s

Sl=l 1 1 1 1

11 _ Gz or _i -- 0_i " Similarly,

= 0 or i depending on whether

3

Z V_2s2 Vs2G2 5_2G2
$2=I

So that we

have the right hand side of (5) equal to

3 S [ S S _l-1

Z Z Yrlr 2 I Z Z Url
rl=l r2=l _l =l _2=1

_2"1 }

Vr2 5_ 1C_l 5_ 2(%2 --

S S G I -i G2-1

Z Yrlr2 url vr
rl=l r2=l 2

which is the left hand side of equation (5) • Thus A is a solution of
SIS 2

the normal equations and the proof of theorem 2 is complete for this special

case.
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Comparison to ANOVA

The analysis of variance model for a factorial design which includes all

of the interaction terms is equivalent to a balanced polynomial model in which

the degree of the polynomial in a given variable is one less than the number

of levels of the factor corresponding to that variable. In the analysis of

variance model we break up the degrees of freedom for a factor into each of

the different levels and in a polynomial model we use the constant, linear,

and quadratic parts. If we have a factor at levels a, b, and c then we may

think of these three degrees of freedom as corresponding to the space spanned

by

1 0 .

0 1

Equivalently, we may consider the space spanned by

b b 2

C C 2

The first is the analysis of variance model and the second is the polynomial

model.

A factorial design in which all interactions above order d are assumed

to be zero is equivalent to a polynomial model in which cross products involving

more than d + 1 factor are omitted.
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Relaxation of Balanced Polynomial Conditions

We have seen in theorem i that the rectangular design enables us to use

the very easy step procedure to find the least squares estimate of the coeffi-

cients of the highest power of each variable in a model which is the general

polynomial of degree d . In theorem 2 we see that the rectangular design

enables us to use the step procedure to calculate the least squares estimates

of all of the coefficients of a model which is a balanced polynomial. We may

now ask; is it necessary to have a balanced Polynomial to get all of the coef-

ficients by the step procedure? Is it possible to have other polynomial models

in which the step procedure gives the least squares estimates of some terms

other than just the highest power?

To gain some insight into these questions we shall consider as an e_ample

the two factor model

Eyij = P (ui' vj)

where P is a polynomial in u and v and the design is a rectangular design

in which u has 4 values and v has 3

Now we apply the step procedure with leading variable v . We write

P (u, v) as a polynomial in v

v_P (u)Yij : Po(Ui) + vjP_(ui) + j.2 i

livl lyil)Let v = va v_) . Let Yi -- Yi2

v§/



253

Then the estimates of Po ' Pl ' ,and P2 are given by

In particular

(ui) .=

J%

P_(ul)= h

(_v)-_v _

 v, yi4

Yi

where L_
stands for some linear

combination. If we assume that Po(Ui_. . = a + aioU + a u2O0 20 3

PI(U) = aol + allU , and P2(u) = aoe

P%

averaging P2(ui) over the values of u .

then we estimate a
o2

That is

by

a = L
02 02

/7.1jYlj 1

7. vj YiJ Iij
I

ij

Now this is a least squares e_timate of ao2 only if it is a linear combina-

tion of the right side of the least squares normal equations. That is, only

if it is a linear combination of

T
xy

/_ YiJ

Z ui
iJ Yij

7 2
lJ ui Yij

= Z VjiJ YiJ

_u i vj YiJ

YiJ

A •

a is a linear combination of these terms
oa

/
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We estimate a
01

I
all

and a by
ll

1u i Z u i

_i

= L

vj Yij

Z v2.
ij J YiJ

Zu
i_ij

u i vj YiJ

Zu 2ij i vj Yij

i i i i 1
u I u 2 U S U 4

/Pi(Ul)\

Pi (u2)

Pi (u3)

Pi (u4)

T
All of the components of this vector except the last one are in x y Hence

^ aa or
Ol ii are not least squares estimates unless the data points u i , vj

are such that the linear combinations symbolized by L do not involve this

last term.

Now we could also put al2uv2 in the model so as to put _ uiv_Yij in

the right side of the least squares normal equations. By continually putting

terms in the model as needed in this example we find that to determine the

least squares estimates of all of the coefficients by the step procedure inde-

pendent of the data points (except that the design be rectangular) it is nec-

essary that the polynomial in the model be balanced. This example also indi-

cates how we would go about expanding the polynomial model so as to estimate

certain coefficients by the step procedure. Having estimated some of the coef-

ficients, we may eliminate them from y and do an ordinary least squares

regression, if it is then practicable.
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APPENDIX A: STATISTICAL BACKGROUND

such that the expected value of Yi

PI' "' "' Pm and the variance of Yi

It is assumed that the reader is familiar with such terms as expected

value, random variable, variance, etc. If not, ready reference to these

terms may be found in such books as Cramer [2] and Loeve [3]

We shall be concerned here with independent random variables YI' "" "' Yn

is a linear function of m parameters

is a2 , i.e.,

E (z) = A p

Var (yi) = a2 i -- i, ... , n

where Z' -- (Yl' "'" ' Yn ) ' -P' = (Pl _ ''" , pn ) and A = (aij) is a known

real n x m matrix. We shall be interested in estimating by functions of

YI' "'" ' Yn certain linear functions of the parameters, say __'_p where

-_' = (_i' "'" ' _m ) We call an estimate of __'p which has expected value

'p an unbiased estimate. If the estimate is also a linear function of the

y's , say c'_ , _c' = (Cl, ... , Cn) , we call it a linear unbiased estimate.

Thus, c'_y is a linear unbiased estimate of __'p if and only if

E =

Since E (_c'y) = _c'A _p we have from the previous equation

c'A _p = _'p

as a necessary and sufficient condition for _c'y to be a linear unbiased

estimate of __'_p . Since we shall consider all of Euclidian m-space as the

parameter space, we have equivalently

(5) c'A = _"
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We define V (A') to be the vector space generated by the rows of the

m x n , m < n , matrix A' and V* (A') to the vector space orthogonal to

V (A') in the n dimensional vector space over the real numbers.

The following theorem is basic in the study of linear estimation.

THEOREM A: If _'p is a linear combination of the parameters for which

there exists a vector _' such that E (d'_) = _'p then there exists

exactly one vector _' in V (A') for which E (_'_) = _'p Further-

more, Var (c'y) minimizes the variance of d'_ over all _d' such that

E (_d'_y)= __'_p

PROOF: To prove the first assertion consider the decomposition

d I = c f + e I

where c' is the projection of d' on V (A') and e' the projection

of d' on V* (A') Now by assumption

L'_p= E (_d'y)

but

E (d'y) = d'Ap = (c' + _e') A_p = _c'Ap + :e'Ap = :c'A_p_- E (s'y)

since e' is orthogonal to the column vectors of A . Thus,

E(a'X) = E(_'Z) = _'2

Now suppose c' belongs to V (A') and E (c_y) = n'p

every p

or

Then for

c' A p = c' A p for all p
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which implies (c_ - c') is orthogonal to V (A') , i.e., belongs to V* (A') .

However, c_ - c' belongs to V (A') since each does and thus c' - c' = o'-- --i -- -- '

c' - c' This completes the proof of the first assertion.i.e., --l --

Now suppose d'y is a linear unbiased estimate of _'p . Then decompose

d' into c I and e I where c I belongs to V (A') and e I belongs to V* (A') .

C'
As before _ly is also a linear unbiased estimate of _'p and c belongs to

V (A') By the uniqueness argument given previously c' = c' Hence,

d' = c' + e' •

= ORC'C + oRe'e
-- -- --1--i

d' ¢ c' , i.e.,

Thus, Var (d'y)_ -- -d'C2In--d = oed'd.....= _2(c' + el)(C + el)

= Var (c'y) + o2e_e I . Therefore Var(d'y) > Var (c'_y) for

e'e _ 0 This completes the proof.
--1--1

We shall call th_s unique estimate which minimizes the variance over all

linear unbiased estimates the best estimate of __'p

Theorem A says that if the "best" estimate of _'p is c'y then

c' = q'A' for some q' . From equation (5) we see that we must have

q'A'A = _' These equations are called the conjugate normal equations.

Conversely, we have that if q'A'A = _' then q'A'y is the unique "best"

estimate of _'p .

THEOREM B: (Gauss-Markov) If _'p has an unbiased linear estimate

A

then the best estimate is _'p where p are the least squares estimates

of p .

PROOF: The least squares estimates of p are those values for Pl ,

P2 ' "'" ' Pn which minimize the sum of squared deviations of Yl ' Y2 '

''" ' Yn from their (estimated) expected value. Thus

n

S 2 = _ (Yj - aj_p I - aj2P 2 - ... - ajmPm)2
j--1
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is to be minimized by choice of Pz ' Pa ' "'" Pm Now

S 2 = (y' - p'A')(y - Ap) = y'y - p'A'y - y'Ap + p'A'Ap = y'y - 2p'A'y + p'A'Ap .

By differentiating S' with respect to each of the p's and setting these

m derivatives equal to zero we obtain

- 2A'y + 2A'Ap = 0 or

* A'Ap = A'y

A

Equations * are called the normal equations. Thus, if p satisfies the normal

equations then p is a critical point of S 2 . Now we shall show that it is

a minimum point.

Let y' be decomposed as y' = m' + e' where m' is in V (A') and e'

is in V* (A') Thus, m' = x'A' and e'A = 0 . Then, y'A = x'A'A + e'A = x'A'A

or A'Ax = A'y Hence, x must satisfy the normal equations. Conversely

since p satisfies the normal equations, _'A' is the projection of y' on

A

V (A') and hence m' = p'A'

in V (A')

COROLLARY : If Eq 'A'y = _ 'p

squares estimates of p

A s%

That is (y' - p'A')A = O' and p'A' is

then q'A'y = _'p where p are least

PROOF: q'A' is in V (A') and by assumption Eq'A'y = _'p Hence

by theorem A q'A'y is the unique best estimate of _'p . By theorem B ,

_'p is the unique best estimate of _'p . Hence q'A'y -- _'p .
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APPENDIX B: PROOF OF THEOREM i

Consider the rectangular design

r (i)
D -_ DI x ... x D_ , D.l = _ xtl : t. = 1 ,...l

and the polynomial (2) written, in preparation for step one of the step

procedure, as

(3) b(_) + b(_) _(_)
1 2

. (_) (x(_;))d-:,
+ ... +o d

+ b (=) (x(_)) d
d+!

where " (x) is a polynomial in x(I) , x(_-I) of degree (d - (k-l))
D k , ....

= f (x(1) (_)) where f is the function to be
Ytl _l ' "'" ' xtLet ...t

approximated by the polynomial (2)

If we can demonstrate that the step procedure estimate of a coefficient

is a linear combination of the components of X'y --where the matrix X arises

from writing the system

_ (Ytl...t)
x(i)+ +

= alll..l+ ".. + al...i... 1 t i

(terms in x_ l) _(_) of degree _< d) +, ''" 3 X

1

(x(_))d
all ld+l t ' ti _ 1 , ... , T.

in the matrix form

E(X) -- X__

as in the case of the preceding example--and show that such an estimate is

unbiased; then the step procedure estimate is the least squares estimate

[Ref. i].
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Since the first step of the step procedure is a lea.,t squares estimation

of the b ('_)'s with x (I), ... , x(_'l) held fixed, the expected value of

the estimate _(_) of b (_) is b (_) Also the estimate
d+l d+l d+l = al...ld+l '

b(_) is itself a linear combination of
d+l

T T T

7. ytl...t , 7 xt Ytl...t ' 7. txt ) Yt ..tt =I _ t =i x K t =i x i" K

t % t %

Since Dd+l" is independent of x If), ... , x_x) succeeding steps in the

step procedure will at each stage give the mean of the result of the previous

stage over the number of data points in the present stage so that the step

procedure estimate of " (_) is
°d+m

T l T

7, ... Y, d+l
t =i t =i
1 _-l

T I T 2 ... T__ I

Since b"_" is unbiased, this estimate will be unbiased.
d+1

also be a linear combination of

This estimate will

T I T T l T T I T
J,

_ (_) , ., 7, . I. _xt )_" "'" 7. Yt ...t ' _ "'" _' xt Yt ...t ....
t =l t =i i _ t =i t =l _ 1 K t =i t =l
i _ i _ I

i.e., the components of X'_ This completes the proof.

It is clear from the proof that by choosing x(i) as the leading variable

the step procedure could be used to calculate the least squares estimate of the

coefficient of (x(i)) d . We are usually interested in the least squares esti-

mate of all the coefficients and in this case theorem 1 is not very helpful.



APPENDIX'C: PROOFOFTHEOREM2

26i

Consider the balanced polynomial

Ll+l L +1

Z ... Z x(1)_... x__)
1

x(i)_- (x(i) i
' _ )

as an approximation of a real function f of _ real variables

over the rectangular design

D -- D x ... x D
i t i = i, 2, ... , T i I

X ( i)
x(i) ti _ si

t i si '

Let

(x.(1) (=))
Ytl...t = f tI ' """ ' Xt

x(_) ,x(_)
2., •

In what follows we shall use capital letters without affixes to denote the

appropriate collection of lower case letters for subscripting purposes, e.g.

the

step procedure estimates of the a's

L = (_i, ... , _ )

First We shall consider the least squares criterion for estimates of

a's and generate the normal equations, then we shall show that the

satisfy the normal equations and are

ACTUAL PROOF: Define S by

thus least squares estimates.



262

S
and calculate 8 a

zero, we arrive at the equation

Setting this partial derivative equal to

7. xCt' ...
T 11 _

= 7. aL T_ x(1) x(1) _(_) x (_)t _ t _ "'" xt _ t _
L i i i i _ _ _ _

Now employing the properties of the rectangular design we have

(4) Z YT x(_) x(_)
T tiGl''" t_

Z aL { (_ x (I) x(1) _ (Z (_)
= ... xt_

L "_i t_ tiG l" t

If we let the matrix

x(_))
t_

(x(i)) be denoted by X i then we have thatt._.
i i

J

Z x(i) _i)
= ti ti_i x .(_.i 1

is the element in the _l" ' Gi position of the _trix X_X.ll and from (4)

(6) ZyTx (_) x$_) = Za L(x (_) • x(_) )
T tiG1'" " _(_ L _I_I" " _

Equation (6) is a typical equation from the normal equations.

We shall now use the step procedure to estimate a typical a, a S ...S
1

In order to facilitate the writing down of this estimate we shall have

need of the following notation. Let

( z(i)_.r.) A= X i' , _i = 1 , ... , Li + 1 , r._ -- 1 , ... , Ti
i i

_.S.

! I = X'. Xi )-l s , _ = i , ... , L. + i(Xci) ) _( _ i i i

The first step of the step procedure for finding the estimate of a

SI_ . . . _ S

(i) = (X_X)-lx_Ytl
at_...t _ s ...t __

T L +m

'" }= Z x :_':_-(_)
rg=i _ =_ (_) _'_ r Yt_..

is
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Yt ...t
1 Y[-I

step is then

a (2) =
t ...t s s
i _-2_-I_

(Ytl,...,t .1, I ' ... , Ytl,...,t _I,T )

(xi___)x(=__))-_x' a(1)_-l t ...t s
1 E-2_
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The second

T L +l
_-l _ _-l £ s

E-I _-I _(E-l)

Z i Z X(E_I ) v£E_l r=I _ =l E-1rK-i E-I

}a(1)
tl...t r s

The ith step is thus

¢!t
1 E_i _s _i_lJ... s

Fina lly

a

S ...S
1 ;[

(X' X )-ix, a (i-l)

E-i-1 E-i-l _-i-i tl...tE_i, s
E-i-2,... S

E

(x'x)-_x' a(E'_)
i 1 (1)

S 2. • .S K

Tl L- +i

_ _isl(_/ }7.
rl=ik rls 2...s

Tl Ll+1 _ s Ta L2+I

Z Z i i (i) Z Z
rl=l _l=l x(1) Z_lr I r2= l _a=l

x(2)z_
2r2

T L +l T L +l

Z _ (_-l) _ _ _ sE E .(E)
_ _ Z Z X(E ) _'_ r Yrr =l _ =l (_-i) _ r =l _ =l E E l'"r

E-I _-1 E-1 E-I r E E E

By using the fact that we have a balanced polynomial over a rectangular design

we can write

x E = z(I) _(=)
as = as 1...s = R_' YR X(1) "'" (E) _irl ... :a_ErE
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If we substitute

becomes

a for
S

aL in equation (6), the right hand side of (6)

Z_a s (x(I) "(_) )_ =
" Sl(_l''" AS (N

qSlx (I) _ ...(Z x__sZ YR [(z(I) . -'(_))(7 x(_) Sl_" _) s &
R _i rl "" L_r_ s I s K _ _[

However

_isix(i)
Z (x(i) s_"
S. 1 1
1

= 5_ _- <0 , _i _ _i
.(_. 1 , _i = (_i1 1

, so that we have the

right hand side of (6) equal to

T YR < L_ (Z_l''" Z(_))£ r 7.YR" (i) Z(_))
R _ZC_lr l" " " _r

which is the left hand side of equation (6) . Thus a
S

normal equations and the proof is therefore complete.

is a solution to the
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A LYAPUNOV TECHNIQUE FOR OBTAINING EXTENSIONS OF AN OPEN LOOP

CONTROL TO A NEIGHBORHOOD OF THE OPEN LOOP TRAJECTORY

By D. L. Luke s

Introduction

We assume that a reference trajectory and the corresponding

control function have been determined for a given dynamical

system. The problem posed is the extension of the control to a
neighborhood of the reference trajectory to obtain a feedback
control which drives the system to the given final state. The

technique is based on the construction of a Lyapunov function
defined in some neighborhood of the reference trajectory.

The usual treatment of this problem is to linearize the

system equations with respect to the reference path and then

control the perturbations about the trajectory. That technique

has the advantage that the system of linear perturbations can
be readily analyzed, but for nonlinear systems it is usually

difficult to provide any simple appraisal of the stability of
the over-all procedure. The Lyapunov technique presented differs

from the classical technique by not requiring a linearization of

the system equations. Further, stability is insured. It is

tacitly assumed in both techniques that the over-all design of

the system is based upon some nominal trajectory and in order to
maintain its validity the control must keep the output of the

system in some neighborhood of the open loop (reference) trajectory.

In this preliminary investigation, the approach taken is to

look for the characteristic properties of controls which provide

the extensions and leave open specific determinations for other

system requirements.

The System and the Control Problem

We consider dynamical systems of the form

dx

g(x,u) ,
dt

where x and g are finite dimensional vectors and u is the

control vector to be determined. It will always be assumed that

the systems are autonomous (t does not occur explicitly in g).
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Furthermore, to simplify the exposition, we will take x to be
two-dimensional and u to be one-dimensional. Thus, we will
consider a system

d_ 1

dt
g_(x, u)

dx_

= g2(x, u) .
dt

It will be advantageous to use arc length as the independent

variable rather than time, so we define

t

0

/ .assuming that g_ O, where g = gl + ge • We then get the

system

dx

_! : f1(x, u)
ds

dx 2

: f_(x, u)
ds

Without loss of generality we assume that x(O) = O.

Let the given reference control function be represented by

u° = u°(x°(s)) and the open loop trajectory by x ° = x°(s) for

0 _ s _ L. (L is the total length of the open loop trajectory.)

The problem is to extend u ° to u = u(x) on some neighbor-
hood of the reference so that
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(a)

(b)

u(x°) : uo(xo)

with the control u = u(x) the trajectory remains in

the neighborhood of x ° and passes through x(L), as

illustrated in figure I.

X 2

O

J
o,I]I
FIGURE I :

(T,)

X 1

A NEIGHBORHOOD OF THE REFERENCE TRAJECTORY

Coordinates for the Nei$hborhood of the Reference Trajectory

In order to assign coordinates we make the standard

definitions used in the differential geometry of space curves.

Let the unit tangent be designated by

A

T(s)--f(x°, u°)

the unit normal by

A

A T'(s)
(where k / O)

and the curvature symbolized by

A

/
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A

Then T(s) is a unit vector tangent to the re_erence path at

the point x°(s) and _(s) is orthogonal^to
The curvature k(s) is a measure of how T(s) T at x°(s).
direction as we move along x o . changes its

Now be letting y1= 2s and setting

A

X = Ry_N+x ° •

where R is a fixed positive constant we can assign the new

coordinates IYl, Y_) to every point in a neighborhood of x °
(see figure 2).

X_

0

x

X 1

Figure 2: Coordinates in a Neighborhood of the
Reference Trajectory

If x ° is simple and differentiable then the mapping will

be a homomorphism on some neighborhood of x ° . With this mapping
we can stretch an elliptical region along the trajectory as
indicated in figure 3.
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X 2

L)

m

o_
x : x(y)

Y_

tVIr _v_ _I \
o __ _2Lv / 2L

+ -i=0

(Lv)_ (Wv)_

X 1

Yl

FIGURE 3: MAPPING AN ELLIPTICAL NEIGHBORHOOD ALONG x °
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Then by writing the equation for a one parameter family of
retracting ellipses in the y-plane, we obtain a Lyapunov
function on the neighborhood of control in the x-plane
(see figure 3).

Lyapunov Function

A short calculation yields the following expression

iY_! IY_,2 , Lv(y(x))=½

which serves as a Lyapunov function.

related by the formula

A

x(y) : Ry2N(y I) + x °(yl) "

The coordinates are

On a neighborhood of x° we can solve this equation to get
y : y(x).

The retracting neighborhood of x ° in the y-plane can be
described by the inequalities

0 < Yl _ 2Lv

Y2 /Yl_ ( Yl< w _ _- 2v - -
-- _J L

Now to get a relation between u and v which guarantees

that the resulting trajectory will fall within the neighborhood

of control and passes through x°(L), we calculate dv(y)/ds
along a trajectory x(s). Differentiating the formula

yields

(Yl y2i2 L 1

_V

V wiy 
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Further

_v y2_ L I
_Y2 W2J Yl

and since

dvl_v_v_y](dyl
ds _Y_ _Y2 dYl

y2!2I_ y_ T) dy__
i dy I

we find

dv

ds 11L J -dy 2 I y7]
dy I 2

Y2
W2I_YI I I Yl

where

_Y2 _Y2 1Vxy 2= _ , _ .

Sx_ _x_

Note that along x ° dv !
, Y2 = 0 so _ = _- > O.

corresponds to the fact that x°(s)

as s goes to L.

This

passes through x°(L)
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dv

We know that as long as ar_ > o and v is a continuously

differentiable function of x, the trajectory will pass through

x ° (L). Thus our control criterion is

L _ u) " VxY_ +f(x, - -- --

Yl L

>0 .

Since y is expressible in terms of x, this is an inequality

on x and u that must be satisfied in a neighborhood of x °.

It should be noted that Vxy _ can be calculated in terms of
A A

T, N and k by using the Frenet formulas:

A A

T' = kN

A A

B' = -TN

A A A

N' = -kT + TB ,

A

where B is the unit binormal and T is the torision. Of

course, since we are dealing with curves in the plane only

the first is needed.

It should be noted that one particular choice of the

control which satisfies the above inequality makes

Y_ = 0. This is the same as requiring
f(x, u) • Vxy2 Yl

dY2 IY2
_-- = O.

dYl Yl
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m

Solving this differential equation yields Yl c2 ,

c is a constant determined by the deviation of the

where

trajectory from the reference path. In this case the control

satisfies the equation

f(x, u) • Vxy2
0 2

- 0

Y2

Thus, the control is calculated in terms of only one of

the y-coordinates.

When the state of the system x coincides with the

reference trajectory, we can define u as u°. This may

result in a discontinuous control function. An alternative

is to abandon the original reference control after the

feedback control has been calculated.

This is as far as the technique can be carried for

a general dynamical system. When a specific system is

chosen, the proper solutions of the control inequality will

become apparent.

Summary

The construction of a Lyapunov function in some

neighborhood of a reference trajectory using natural coordi-

nates has been illustrated. With this function it is

possible to specify a sufficiency condition in the form of

an inequality in terms of the control function u and the
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state of the system x. This inequality isolates classes

of controls which will drive the system to the end state

as specified by the reference control.

Furthermore, these controls can be made to coincide with

the reference control along the reference trajectory if

discontinuous control functions are allowed.

The technique does not require the linearization of the

system equations and therefore provides an alternative method

for determining controls for some neighborhood of a design

trajectory.

Finally, it should be noted that the same technique can

be applied to an n-dimensional system with a vector control

function.

Example

Consider the dynamical system represented by the

equations

dx I

-- =X 2 - I
dt

dx_

-- =I -x I +u
dt

with a reference control function u° = 2(x_ - i).

of arc length, the equations are

In terms
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dx_ x 2 - I

ds _r(_ _ l)_ + (1 - x_ + u)_

dxs I - x_ ÷ u

ds "_(x_ - _)_ + (l - x_ + u)_

so the reference trajectory is

= _ 0 <_ s < _,12 = L
X ° (S) _,/2

We find the tangent and normal vectors to be

a 1 N(S) = and k(s) = O.

Thus, the coordinate transformation used is

A

x(y) = Ry2N + x°

SO

x(y) :-

/" 1

2,72
!

i

1

!.

' Y1!

Y21
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and the inverse is

y(x)=

/ 2 2

!

X I

X 2 /

Thus, Vxy 2 =

inequality
I

and we can substitute into the control

f(x, u) Vxy_ - -- + -- > 0
Yl Yl L

A particular solution is obtained by setting

Y2

f(x, u) • Vxy_
Yl

=0. This yields the equation

- X I - Xs + U xl)
X 2 + X I

By solving a quadratic equation, a solution u = u(x) on

some neighborhood of the reference trajectory is obtained.

Notice that on the reference path the solution agrees with

the reference control.
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CONTROLLABILITY FOR LINEAR AND NONLINEAR SYST_4S

+
H. Hermes

Introduction

The concept of complete controllability was introduced by

R. E. Kalman for linear systems. It is the purpose of this work

to give a method of extending this notion to nonlinear systems with

control appearing linearly.

The motivation for the method of extension came largely from

results obtained in [3] , and from the geometric interpretations of

non-integrability of pfaffians given in I11 and [2] . In parti-

cular, Caratheodory gives an argument to show that if, for a single

pfaffiaa equation, there are points in every neighborhood of a given

point which are not "reachable" from the given point by curves satis-

fying the equation, the equation is integrable. This was generalized

to systems of pfaffians in [21. . There is a difficulty in trying

to apply such results to pfaffian systems which are quite naturally

associated with control systems having linear control. (See _ II).

The reason for this is that the independent variable t, or time,

appears explicitly in the pfaffian associated with a control system.

Hence the integral curves of the pfaffian system, which can be related

back to solutions of the control system, and are used to connect

neighboring points to a given point, must have t parametrized as

t( g ) with t( o- ) monotone. This is not the case in the proofs

given in [I] and [2] .

+
This work was supported in part by NASA Contract No. NAS8-11020.
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The relation between singular problems and controllability also

arises quite naturally, as can be anticipated from results obtained

by LaSalle in _6] . There it is shown that if a linear system is

normal, the bang-bang control is unique for the time optimal problem

Since for a single component of control, normal

and proper are equivalent, and proper is equivalent to complete con-

trollability, one expects that complete controllability has a relation

to the presence of singular arcs. This is discuBsed in _ II.

I. Complete Controllabilit_ for Linear SFstems

In this section we will be primarily concerned with the linear

time varying system

B

(1.1) x(t) = A(t)x(t) + G(t)u(t)

and the constant system

(1.2) x(t) = Ax(t) + Gu(t)

where we assume A(t) is a continuous nxn matrix valued function of t;

G(t) is a continuous nxr matrix valued function of t, with 1 _ r _ n,

while the control vector u is a measurable, finite valued, r vector

function of t.

The definition of complete controllability for systems of the

form (1.1) and (1.2) was given by Kalman, and its consequences have

been studied in a series of papers, see in particular [4] , 15] .

For the purpose of completeness, I will summarize some of the main

results in this section.
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Let _u(t; to, xo) denote the value of the solution of (i.I)

at time t, for control vector u, and initial data x° given at to.

_(t,_) will denote a fundamental solution of the homogeneous equation

= A(t)x. The same notation will be used when we have system (1.2)

in mind.

Definition (Kalman). The system (1.1) is completely controllable at

to if for every initial state Xo, there is a control u depending on

to and Xo, such that _U(tl; to, xo) = 0 for some finite tI.

This definition is valid for the system (1.2) but reference to

t is no longer needed.
0

Theorem 1.1 (Kalman). The system (1.1) is completely controllable at

time t iff the matrix
o

t1

W(t o, tl) _f

t
o

_(to, _ )G(T) GT(T) _T(t o, Z- )d_"

is non-singular for some tI > to. (Note: W is a symmetric positive

semi-definite matrix.)

Proof a) To show sufficiency, assume w-l(to, tl) exists. Set

u(_) = -GT(z -) _T(to,K)w-l(to, tl)x ° , for arbitrary initial data

x . Then
o

_U(tl;to,X o) : _(tl,to)X o - _(tl,to)W(to,tl)W-l(to,tl)x ° : O.

Remark 1 The condition W(to,t l) non-singular yields a stronger

result than required by the definition, i.e., any point x° can be con-

trolled to the origin in time tl, where tI is independent of xo.
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b) To show necessity, assume the system is completely controllable

n

at to . Let e_,l " " " , e be a basis for _', and tl,...,t be the corres-
n n

ponding times it takes to control the basis elements to the origin. Let

= max Itl' " " " _ tn_ " It will next be shown that any initial value

x can be controlled to the origin in time _. Let uI n, . . . , u be the
O

controls which take the basis elements to the origin and define

-i _n
u , . . . , u by

Now x
o

i < t < t.

_J(t) = uJ(t) ; to-- -- _

0 ; tj _ .

=_. ev for some set ofscalars_j_ . Define

u(t) =_ _9 _¢ (t). We will show u takes x ° to the origin

in time t. Indeed
t

/
t
0

t

_d {_(_'to ) e_ +/ _(_'T')G(_)_(_)d_ = O"

t
0

We now assume W(to, t) is singular for all t > to and show a

contradiction. This assumptionimplles there exists x # 0 such that
0

T W(to ' _)Xo = O. DefineX o

u'(t) = -GT(T) _(t o, t)x° .

Then
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xoT W(to,_)x ° =/ u'T(T) u'(?)d_ = 0

t
0

which implies u'(t) _ 0 since u" is continuous.

there exists a u such that

On the other hand,

r"

X0 = -/ (_(to

0

,T)Q(z-) u(z-)_r

therefore

xT -/ uT(z-)QT(r) _T(to,r)x0 No = 0

t
0

d r-

t

= -/ uT(_") u.(T)dZ"

t
0

=0

since u" _ O.

This contradicts the fact that x # O.
0

Remark 2. It is easy to show that if the system (1.1) is

completely controllable at to, then it is completely controllable at

any time t < to . It is not, however, necessarily completely con-

trollable at a time t > t .
0

/
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Corollar_# i.I A necessary and sufficient condition that there exist an

(n x:r) matrix valued measurable function V(t) such that for some

t2 _ to, the matrix

(1-3) W(t o, t2) _f

t
o

t2

_(to, T )s(_") v(T) d_"

is non-singular, is that for some tI _ t o ) W(to, tl) is non-singular.

Proof:

and

Sufficiency is immediate by choosing

V(t) = GT(t) _T(to, t)

tI = t2 •

To show necessity, assume V(t) is such that W(to, t2) is non-

singular. We proceed to show that this implies (1.1) is completely

controllable at t . Indeed the control
o

uCt) = -vCt) _-1(to, t2} _(t2, _o )x°

a.

takes the arbitrary initial data Xo, given at to, to the origin in

time t2. This implies (1.1) is completely controllable, which, by

theorem 1.1 implies there exists a tI =- to such that W(to, tl) is

non-singular. I

Corollar_ 1.2 (Kalman) The system (1.2) is completely controllable

the rank of the matrix IG, AG, . . . , An-I G] = n.iff In this

case any point can be controlled to the origin in an arbitrarily small

positive interval of time.
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Proof: See [4] .

Remark 3. As shown in theorem 1.1, if W(to, tl) is non-singular

then any point x° can be controlled to the origin in time t1. Also,

if _ is any other point, then E can be attained at time tl, from the

point x° at to, by use of the control

u(t) = GT(t)_T(to, t)w-l(to, tl ) [_(to, tl) x- Xo]-

Application to Minimum Amplitude Transfer

Assume that the system
e

(1-4) x(t) = A(t) x(t) + h(t) u(t)

is completely controllable at to, with W(to, tl) non-singular and

_(t, to ) the fundamental solution of x = A(t) x

The problem considered is that of transferring an arbitrary

point x° to the origin in a given time tI (which is large enough so

that the transfer is possible) and to do this with a control which

minimum_°_Ito, tll norm. The problems of such transfers withhas

minumum energy, i.e., controls which have minumum _2 norm is solved

in [5].

o.o
It will turn out that the control with minimum_ norm for the

above problem, will be constant, in absolute value, for almost all t,

i.e., a bang-bang control. This should be expected, in view of the

results obtained by LaSalle [61 for the time optimal problem.

-z_ _iJ(to, t) hi(t), i = i, 2, . . . , n,Fi(t)Define

j=l

and let F be the vector with components 2. Then the assumption of
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complete controllability, and tI such that W(to, tI) is non-singular,

implies that for any constant vector Xo, there exists a control u

such that

(1-5) tx° = F(_')u(_-)dZ- .

t
o

We consider the functions Fi in _i [to, tl ] and the control u

in to, tI . Let L be the linear subspace spanned by the functions

L -J-

_1_
Define L by

= {g 6 L°'° :f tl

t
0

g(T') _(_") dT = O, i =l,2,...,nl

Let v be any control satisfying (1-5). As the solution we seek a

oo
control u, of smallest_ norm and such that (u-v) 6 L , i.e., we

1
seek a closest element _ £ L to v, and then set u = v-_O .

The problem is now posed so that the following well known theorem

of functional analysis can be applied•

Theorem: Let L be a linear subspace of a normed linear space X and

let L C X* (the normed conjugate space) be the set of continuous

linear functionals in X" vanishing on L. For any x 6 X*, of distance
o

d from L ± , we have

X I Xox txId = rain xo - Z = sup =

Z% L .x Ixl o L

where the minimum on the left is actually attained by some _o in L
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(Here IXo* J denotes the norm of x * on the subspace L.).
L o

For a proof of this theorem, see [8] , where a moment problem

of the form (1-5) is also considered, and it is shown that the

Ju(t)J = Const. for almost all t.solution satisfies
i J
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II. Extension of Complete Controllability to Non-linear Systems,
with Linear Control

In this section we consider extending the notion of complete con-

trollability to systems of the form

(2-1) x(t) = g(t, x(t)) + H(t, x(t)) u(t)

where g is an n-vector, H an nx r matrix, while u is a finite valued

measurable control vector. It is assumed that g and H are C $ in all

arguments. Throughout this section the stipulation l_r < n is re-

quired to hold, and it is assumed, mainly for convenience of notation,

that H has constant rank r throughout the domain _- in (t, x) space

of interest.

Let B(t, x) be a C !, (n-r) x n, matrix, with rank n-r, satisfying

(2-2) BCt, x) H(t, x) _ O, (t, x)E_ .

We can therefore associate, with a system of the form (2-1), a

pfaffian system

(2-3) B(t, x)dx - BEt, x) g(t, x) dt= 0 .

Definition 2.1. The pfaffian system (2-3) is integrable if there

exists a linear combination of the rows of B, taken with Ci scalar

n-r

valued coefficients o<_ (t, x), such that if b(t, x) =_ _ (t,x)b L/ (t,x)
_ _ =i _2 '

where the b_ are the rows of B, the [,faffi_n

(2-4) b(t,x)dx - b(t,x)g(t,x)dt : 0
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is an exact differential. (We assume b _ 0.)

It should be noted that there is no loss of generality in assuming

(2-4) _n exact differential, since if it were merely integrable, the

integrating factor could be includedwith the scaler multipliers _

to form a new pfaffian which is an exact differential. Throughout

this section the vector b will represent some linear combination of the

rows of B.

Before stating an explicity criterion for complete controllability

of a system of the form (2-1), one may ask: What should one expect the

definition to yield? This can presently be answered as follows. Since

the definition should extend that given for the linear systems considered

in Section I, which are special cases of (2-1), one expects:

a) If g(t, x) _ Ax, H(t, x) _ G, where A and G are constant,

then the analytic criterion which defines complete controllability

for (2-1) should imply and be implied by the rank of the matrix

[G, AG, . . . , An-IGI = n.

b) If g(t, x) = A(t)x , H(t, x) = H(t), then the criterion which

defines complete controllability of (2-1) should be equivalent

with the condition W(to, tI) is non-singular for some tI :_ to •

c) There should be a geometric interpretation of the condition,

e.g., what points are attainable from the initial point in finite

time. In the linear system, there were global attainability results,

i.e., any point oould be attained from the initial point via a tra-

jectory of the system. In the non-linear problem, one would expect

at most local results of this nature .....
/

,/

/

/
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The approach will be to state a criterion for complete controllability

of (2-1) which we will show satisfies a) and b) above. We then use this

criterion to show what the geometric interpretation mentioned in c)

should be. Of course, how the definition of complete controllability

should be extended, is a matter of personal opinion.

Definition 2.2. The system (2-1) is completely controllable at t if
o

the associated pfaffian system (2-2) is not integrable for t >_ to,

(t, x)£_- •

It will next be shown that this criterion is equivalent to the

condition W(to, tI) being non-singular for some tI > to, when

g(t, x) = ACt)x , H(t, x) = H(t).

For the system

(2-5) x = A(t)x + H(t) u

to form the associated pfaffian system, it suffices to take B = B(t).

Also, in forming the vector b = b(t), there is no loss of generality

in taking the functions o(Q as functions of only t. Indeed we must

only show that if the pfaffian

(2-6) b(t)dx - b(t) A(t)x dt = 0

is in tesrable, then the integrating factor, denoted by ju, can be

taken as a function of only t. To obtain this, suppose _(t, x) is

such that

_(t, x) b(t) dx-_(t, x) b(t) A(t)x dt

is an exact differential. Then _xjb i - @xi bJ = 0 for all i,j=l,2,..,n
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and _t b + _b= -_xbAX - _bA. Define _(t) =_(t, O).

It follows that _u(t) is also an integrating factor.

Since it is sufficient to consider both #u and the _ as

functions of only t, there is no loss of generality in considering

that if the pfaffian system

(2-7) B(t)dx - B(t)A(t)xdt = O

associated with (2-5) is integrable, then (2-6) is an exact

differential for some b.

Theorem 2.1 For the system (2-5), a necessary and sufficient condition

for W(to, tl) to be non-singular for some tI _ to, is that the associated

pfaffian system (2-7) be non-integrable.

Proof: a) Necessity. (We shall prove the contrapositive).

Assume (2-7) is integrable. This implies (2-6) is aM exact differential

for some vector b, which in turn implies

b(t) _-b(t) A(t) .

Let _(t, to ) be a fundamental solution of _ = A(t) x .

b admits the representation b(t)

Let h(t) be any column of H(t).

C _(t o, t)h(t). But

=_ tl
W(to_t I) _(to,t)H(t)HT(t)_T(to,t)dt.

o

Since h was an arbitrary column of H, for every tl__t o

Then the vector

= c _-l(t, to ) for some constant vector c.

Then 0 _ b(t)h(t) = c _-l(t,to)h(t) =

we have
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C WCto, tl) cT_0 which implies since W is a symmetric, positive

semi defiM.te matrix, that W is singular for every t I _ t o .

b) Sufficiency (Again we shall-prove the contrapositive)

Assume W(to, tl) is singular for all tI _ to . This implies there

exists a vector c(tl) such that

(2-8) ]a.(t l) _(t o, t) H(t) HT(t) _T(to, t)dt cT(tl )

t
0

=0

for any tI _ to . From continuity of the integrand,

cCt I) _(t o, t)H(t)HT(t)_T(t o, t)cT(t I) : 0 < t < tI .for to_ _

letting 0 denote a zero vector, it follows that

0 =_ c(t l) _(to, t) H(t) = c(t l) _l(t, t ) H(t)
O

thus b, defined by b(t) = c(t l) _-l(t, t ) is an admissible vector in
o

m.

the sense that b_ h = 0 for all columns h of H, showing that b lies in
j_

the subspace spanned by the rows of B.

Define a scaler valued function

_(t, X) _ C(tl_ _-l(t, to) X.

We will show that _ is an integral of the pfaffian equation associated

with b, i.e., the equation

c(t I) _-l(t, to)dX - (C(tl) _-l(t, to)A(t)x) dt = O.
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Indeed

- c(t I) _-l(t, to) A(t) x which is as required.

Since the condition; rank [G, AG, . . . , An-lG = nl, for the

system (1.2) can be deduced from the more general criteria that

W(to, tl) have a_'inverse for some tI _ to, the verification that our

extended criterion of complete controllability is equivalent with the

existing criteria for linear systems, is completed.

Geometric Interpretation of Definition (2.2)

By associating a pfaffian system of the form (2-3) with the system

(2-1), it is conspicuous that the stress is taken away from the

functional form of the elements of the matrix H, and placed only on

what the range of H(t, x), considered as an operator on EZl is. This

obviously should be the case when controls are required to be only

finite valued and measurable.

their paper [71 , Markus and Lee consider a system of the formIn

= F(x, u), F a C i in Enx _ , where _ , a compact set contained in

En with 0 in its interior, is the range set of the control. Assuming

F(O, O) = O and letting A = F (0, 0), H = F (0, O), it is shown that
x u

if the linear system _ = Ax + Ku is completely controllable, then the

set of points from which the origin can be reached in finite time, by

trajectories of x = F(x, u), is an open connected set containing the

origin. Kalman [91 pointed out that a similar result can be obtained

for a system of the form _ = F(t, x, u) by assuming the linear approxi-

mation is completely oontrollable in terms of the criterion given in

theorem 1.1.

_Zx(t, x) = c(t I) _-l(t, to), while _t(t, x) =c(t I) _-l(t,to)X =
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We next proceed with an analysis, similar to that used in the

papers mentioned above, to examine local controllability about a given

trajectory of the system (2-1). Let x(t o) = 0 be initial data for this

system, v an arbitrary control (finite valued and measurable) and _v

the corresponding solution. Let u(t; _i' " " " ' _n ) = u(t, _ ) be a

family of controls such that u(t, o) = v(t), u_ exists, and denote

x(t; _ ) as the response to u(t; _). Then x(t; _ ) satisfies

t

x(t;_) _f [g(_, x(_-;_))+HCF, x(_;_))u(_-;,)] d_

t
O

t

x_(t; O) =/ [gx(_,_(_')) x_ (l-; O) + Hx(Z-, _v(_'))v(Z-)

t
O

o) o)] dZ

r

where HxV is an nxn matrix with i j_element being 2 HiJX. V •

J
=I

For each t _to, we view x(t;@) as a mapping _ _x with

0 _v(t). Letting Z(t) denote the Jacobian matrix x_ (t; 0),

if it can be shown that for some t, Z(_) is non-singular, it follows

that the attainable set of time [, contains a neighborhood of the

point _v([).
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Let _(t, to ) be a fundamental solution matrix of the system

x(t) = [gx(t, _pv(t))+ Hx(t, _v(t))v(t)] x(t).

Then

Z(t) - I

t
0

t

_(t,_-) HC_',Q_v(_-)) u_ CZ-; O) d%- .

From corollary 1.1 and theorem 1.1_ a necessary and sufficient

condition that there exist an nx r matrix u_ (ti O) such that Z(t l)

is non-sinsular for some tI _ to, is that the linear system

(2-9)
yCt) = [gx(t, _v(t))+Hx(t, _Vct))v(t)] y(t) + H(t, _Vct))u(t)

be completely controllable. In terms of the pfaffian approach, let

B(t, x) satisfy (2-2) while b(t, x) is again an arbitrary linear com-

bination of rows of B. Then there existsan nxr matrix u_ (t, O) such

that Z(t l) is non-sinsular for some tI =- to iff the pfaffian system

B(t,_Vct))dx - B(t, </gv(t)) [gx(t, _Y(t))+Hx(t,_v(t))v(t)] xdt= 0

is non-intesrable. From definition 2-i, this means

(2-1o)
b(t' _v(t))dx- b(t' _v(t))[gx(t' _v(t))+H (t'_gv(t))v(X)]x xdt= 0

is not an exact differential, for arbitrary b.
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It is interesting, at this point, to see the implications of the

assumption that (2-10) i_ssan exact differential. This implies and is

implied by the condition

(2-11)
d b(t,_v(t))--b(t,_v(t))[gx(t,_v(t))+ Hx(t _v(t))v(t)]dt ' '

which can be recognized as the so-called adjoint system of the maximum

principle approach to the time optimal problem for system (2-1). It

should be noted that if p(t) _ b(t,_v(t)) satisfies (2-11), then it is

an adjoint vector which {s orthogonal to all of the columns of H. Since

the maximum principle, for control components bounded by one in absolute

n

value, implies: choose uJ(t) m + sgnZpi(t) Hi_(t,_v(t));_ in this

i=l

case it yields no information since b(t, x) H(t, x) m O.

I shall designat_ such a problem as one which admits a totally

singular arc, i.e., where the maximum principle yields no information

in the time optimal problem, for any components of the optimal control.

The problem would be singular, but not totally singular, if p is orthogonal

to some, but not all columns of H.

I return again to the assumption that (2-10) is an exact differential.

Since b(t, x) H(t, x) = O, for any vector v(t), 0 = _ b(t,x)H(t,x)v(t)

or v(t) HT(t, x) bx(t , x) i-b(t) Hx(t , x) v(t). Evaluating this

identity at the point (t, _v(t)), substituting into (2-11) and expanding

the left side yields

(2-12) bt(t,_v(t)) + b(t,_gVCtJ) gx(t,_v(t)) + g(t, _VCt)) bTx(t,wv(t))m

v(t) HT(t,W(t))[bx(t,W(t))- bT(t,_v(t))] •
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The identity (2-12) is a necessary and sufficient condition that (2-10)

be an exact differential.

Lemma 2.1 If the system (2-1) is not completely controllable at to, i.e.,

the pfaffian system (2-3) is integrable, then the matrix Z(t) is singular

for all t > to, and for all reference trajectories _v.

Proof: If the pfaffian system (2-3) is integrable, then for some b, (2-4)

is an exact differential. This implies and is implied by the conditions

bt(t , x) _ -b(t, x) gx(t, x) - g(t, x) b_(t, x)

bx(t , x) - bTx (t, x) _ O.

Evaluating these two identities at (t, _v(t)) for an arbitrary control v,

shows that (2-12) is satisfied, hence Z(t) is singular for all t _ to .|

It should be stressed at this point, that it has not beenshown that

if for some control v, the matrix Z(t) is singular for all t _ t , then
o

sufficiently small n-nbds, of a point _ov(t) contain points not attain-

able in time t, from x at time t .
o o

Another conjecture which one might be tempted to make is that if the

pfaffian system (2-3) is not integrable, then (2-1) contains no totally

singular arcs. This is not true, as the following example from [3] shows.

Example: _l = Xl2 - Xl2 x2 u Xl(O) = 1

x2 = -x2 + u x2(O) = o .

For the time optimal problem of reaching the point (2, 0), it is shown

in [31 that u- 0 is the optimal (singular) control, if the restriction
L J

/"
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lu(t)l _ i is imposed, and it easily follows that this is also the

optimal control in the class of finite valued measurable controls.

For this problem, one can use for the matrix B, the single vector

(1, Xl2 x2). The associated pfaffian equation is

dx I + Xl2 x2 dx2 + Xl2(X2 2 - 1)dt = O.

Let x = (Xl, x2) ,

a(x) = (i, x12 x2, x12(x2 2 - I)).

Then (curl a(x)), a(x) = 2 x2 x12 i O-- -_ the pfaffian is not

igte_rable.

The optimal path from the point (i, O) to (o_, 0), _> i, is ob-

tained with control u = 0 and is

I I

l-t

_o(t) =_

0

Thus b(t, _°(t)) m (i, 0). We next compute

b(t, _(t)) . dx- b(t,_°(t))[gx(t,_(t)) + Hx(t,_°(t)) . 0] x dt

2xI
= dx I + 0 dx2

l-t

- -- dt .

-2x I

Let _(x, t) - (i, 0, (I----_.)).Then (curl _). B-- 0 which implies the

p faffian dXl + 0 dx 2 - l_F3_dt =0isintegrable, and the problem admits a

totally singular arc. Pictured below is the reachable set, from (1, 0),

with the control constraint lu(t)l_ i. Changing this constraint to
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lu(t)l _ M does not essentially change the figure and in particular, does

not change the arc _°(t), which is such that all neighborhoods of a point

_°(t) contain points not attainable from (1, 0); even when the control

class is chosen to be the class of finite valued, measurable functions.

x2

1
t

(i,0)

_(t)

/O_°(t) I
I
I
I

J

I
!

/
I

I
/

Slowest path to a point of the

form (_, 0), c_ _ 1
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ABST_T

A
Perturbation solutions of the equations of motion are presented

which define the motion of a vehicle subjected to a low, constant thrust

acceleration. A complete second-order solution is given for the case in

which the thrust vector makes an arbitrary but constant angle with the

radiu_ vector. Appllcatlon of the theory to transfers between circular

orbits Is discussed. __
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PERTURBATION SOLUTIONS FOR LOW THRUST

ROCKET TRAJECTORIES

iNTRCDUCTION

Under Co, tract NAS 8-5248, Aeronutronic has been investigating

the motion of a w'hicle subjected to a low, constant thrust acceleration.

The intent of tle iavestigation has been to improve the analytical repre-

sentation of low thrust trajectories through perturbation solutions to

the system equations of motion. Of primary interest is the application

of the perturbation solutions to orbit transfer problems. By making use

of these solutions, certain optimization problems of interest may be

treated within the realm of simple optimization theory, and improved numerical

computation techniques can be developed. This paper summarizes the pertur-

bation theory, which includes a complete second-order theory for the motion

where the thrust vector is maintained at a constant angle with respect to

the radius vector_ In subsequent sections we will introduce the system

equations_ present a first-order solution for tangential thrusting in

order to illustrate the basic methodology, and then proceed to develop the general

second-order theory. We will then conclude by discussing the application

of the theory to orbit transfer problems using an energy/momentum approach.
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E_UATIONS OF MOTION

Consider the problem of flndlng perturbation solutions of the

differential equations of motion of a rocket moving under low thrust.

The equations of motion are

(I) d2 p V 2 I,_ Jr -- = (Z COS _/
dT_ P p2

I d

(2) p dT (P_) = Ctsln_

de
The notation is that of E. Levin (Kef. 2). We define _ = P _-- ,

= (thrust acceleration -- initial gravitational acceleration), where

I
0 < _<_, _ is the angle from the radius vector counterclockwise to the

thrust vector while p , @ ) T are dimensionless poslti6n and time vari-

ables.. (See Figure i) Thrust .

0 _ .............. _

FIGURE I"
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The constants of integration are determined according to the inltla|

conditions, p= I,_ = 0,T = 0,_ = 1,0 = 0, s = 0, where s is a

dimensionless arc length. The notationpand0denotes the different£a-

tton of Pandewith respect toT.

TANGENT [AL ACCELERATION

Consider the case of tangential acceleration: tan _ =_
p

'['n¢.n the equations of motion, (i) and (2) w become

(3) d2-_° _ 2 1

dT2 p p2
2 +

1 d
(4) _ -- (pv)

d'r

2
W i th (ds)

o. 12

2+

= (d _)2+ ,o2 (dO)2, the dimensionless arc length, and

dO

= p _ , we obtain

2 2

ds _ 2 V2(5) (_7) = ( ) + ,J = .

We note from Levin (Ref. 2)that

(6) _ = _cos, + c_v sin

dE
where E = the rate of change of the instantaneous energy E.dr

tangential case, equation (6) be'comes

°

For the
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Nowjchanging to the independent variablep s3we have

dE aV
Vd-_=

(8) E = Cos + E
o

Express%_tg equation (8) in terms of the speed V for an initially circular

orbit, we arrive at the first integral obtained by Benney (Ref.1)

(9) V 2 (ds) 2 2= _ : _ +2_s-I

Thus equation (4) can be written as

(I0) d(p_) = a dT = a d'r= ads _ ads

/_2 + "V. d'l---" "p + 2 C_s-1

Integrating equation (I.0) we obtain

c_f 2

(11) h = p_= e _ + 2as-1 ,

where h = p_ is the angular momentum.

" 2

Witit the approximation ex_l + x + _ ,

reduces to

2

(12) h - pv= I +O_g(s) + _- g2(s) ,

ds
where g(s) = f

2
--+ 2_s-I
P

Similarly equatioo (3) can be written as

(13) d2p v2 1 .= g

for small x, equation (II)
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We next show that equations (3) and (4) can be brought into the form

d2u 2 af 2u+2c_ s-I
(14) -- + u = e

dO 2

dT 1
(15) = --2 e

U

ds }2u+2_ s-I

i
where u = --

p •

1
Setting p = -- in equation (ll) we obtain

U

$
d ,9 _ i dt_

(16) p_= ,o2 0= p2 .... e c_g(s) _
dT 2 2 dT

U U

= h

I in equation (3) we get,
which is equation (15). Setting p =

d____P I dud 0 du d__ . h 2 u 2 d 2

dT U 2 _-_ _-_ -h _-_, d.r2

2 dh du

- hu

Substituting these derivatives into equation (13) we obtain

(17)
d 2 I l d[_ du c_ _s]

+ u = o •
dO2 h 2 It d--O + --hu"

For the tangential case, we will sl,ow that the quantity inside the bracket

is zero.

From equations (15), (16), and (9), it follows that

dh 0c h ds = c_h.d_h _=h u2 dh dh ct
d--_- • 2 aT . "de) d-'_ or d-_ =

S S U S

Also" dp = 1 du dO

ds 2 dO ds
U

2 2

From equation (4) dO = u dh h u
d"'s Cc dT = --'---s
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so that _ = h du
ds -_ d--_ "

Thus the quantity inside the bracket in equation (17) is zero, thereby

substantiating equation (14).

We regard the right side of equation (14) as a function of 69 so that we have

a nonhomogeneous linear differential equation with constant coefficients.

The complete solution is obtainable by variation of parameters in tile form

i -2 (Xg(s)
i i@ -i@ -2_ g(S)do + 2 e-ie_eie(18) u = A COS _ + B sin 0 - _ e fe de

ds

where i = _-[, A and B are arbitrary constants and g(s) =f2u+2(Zs-I

Integrating equation (18) by parts, we have

-2 a g(s)+
(19) u = A cos '9 + B sin (9 $ e 0 (0_ ")

as a first order solution. To obtain a more explicit form for the particular

integral, we differentiate

o / ds-_c_ g(s) -2a
(20) u = e = e 2u+2_ s-I

with respect to s to obtain

-2_ I ds
du -2C_ 2u+ 2C_ s-i -2c_u

(21) d-_ = 2u+2 _s-I e - 2u+20_ s-I

which can be arranged as

I I

(22) u ds + s du = _ du - _ u du = d(us)

2
U U

which has the solution us = 2-_ " 2--_ + el, or since
u = I when s = O,

(23) u = 1-2_s.
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Using equation (23) in equation (15) and knowing that

V i2 1 du )2de = _ "-_ (_ss
U

0 = s + O(a.) .

ds we find that

Now, evaluating the constants o[ integration in equation (19) according to the

initial conditions, we get A = 0 and B = 2¢_, so that equation .(19) becomes

(24) u,, 1 - 2a(s - sin s) +O(a 2)

1
or since p = -

U
we have an expression which is in agreement with Benney's result.

(25) p = I + 20_(s - sin s) + 0(C_ 2)

We now write equation (15), neglecting terms of order o_-,

(26) dT 'i [1 - 2a(s - sin s) ] -2 (1 -as) dO+ 0(c_ 2)

= [1 +a(3s - 4 sin s) ]dO

_ 2 I du2Using de = u - -_ (_s)
U

ds, we get

(27) dO = it - 2 C_ (s - sin s) ] ds

We can integrate equation (26) to get

(28) "r-c = f, [i +(%(3s - 4 sin s)] [ l - 2 _. (s

2
S

--" s + a(-_- + 2 cos s)

sin s)] ds
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s = 0 when IF = 0 so that C = - 20_

2

(29) _ = s + _(_-- - 4 sin 2
S

5).Z

and equation (28) can be written as

Equations (25) and (29) constitute a complete first order solution of

equations (14) and (15) in the case of tange,tial acceleration. Analogously,

a second order solution can be derived.

GENERAL CASE

Let us now consider the more [_.cneral case of t::rusting with a constant

orientation angle "/J. 'fhe equations of _:_otlon arc now of the form of equations

(i) and (2). Writing equation (6) in a different form, we i3ave

J

(30) E = V ds _ cos (_-_) + v

or

1 V 2 1 1 -2 1
(31) E = g/cos (_5-7J') ds + C = -@ o = 2 s - -

i

We choose C = - 2 to satisfy initial conditions, /c= I, s = O, F= 0, and

then equation (31) becomes t'_e first integral

V 2 2 2(32) = s =- + 2 ¢_ f(s) - 1
.p

where f(s) = / cos ('_5-_#) ds = s sin "_/+ O((Z)

In the same way that we obtained equation (II) we now obtain

(33) ,h =pv = e
{ t_f sin_ ds

I_V i*
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In place of equation (17) we will have

d 2 1 1 f dh du
(34) u + u-

d02 h 2 h L _ d0

+

_cos _ ]h u 2

1 d @ dh ____s in_Since h = and -- =
2 d T d 69 uV

U

equation (34) as

O

(35) d----u--u I O_ [S iunq/, dud v 2 + u = 9 hV _h _

_/ .!2.o. o 2(d0)_ + P , we can write

as)2 + p2 + cos d-_

He,ice we can write equations (35) and (33) as

(36) d-u + u = exp _o& f sin_#ds [_ _ 1 sin'# ( 2 + __
d_2 - _'V I V u " d )

+ cos_ _ j exp :- &f'_ 'vv ' j '

(37) dT- = ._i f f--'si_1d-_J_ ]_ where eX '= exp{x}--d-'O 2 exp -C_
u _ V'7 ._ '

The complete solution of equation (36) is obtainable by variation of parameters,

analogously to equation (18), as

i i_ -i_q i -iG i9

(38) u = A cos 0 + B sin 0 - _ e f e FI(0) d0 + _ e f e F I (0)d_

where

F1 (O)__ exp i _2 f & sin_I:V _ds d0_ - " [ 1 sin" _(d_ 2 "_p2V" u dgd_u

+ cos _ _ exp - f (% S/_vin _ d--O d 0
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2
X _ X

Using the approximation e _ i + x + _- for small x, we obtain a first

order expression for equation (38).

i iOf_iOF2(O " i -iO iO(39) u = A cos 0 + B sin 0 - _ e )dO+ _ e f e F2( 0)d 0

where F2(O) = 1 - 2c_ f vV
ds "d0 - Ct ds
d--O V cos _ _-3 + 0 (C_2).

Upon integrating equation (39) and evaluating the constants of integration,
du

A and B,according to the initial conditions 0 = 0, u = I, d--_ = 0, and letting

_) = "/o• a constant, we obtain

(40) u = i -¢t [2 sin _/° (J- sin G) + cos _o (I - cose) ] + 0(0_2).

(41) p= i +a [ 2 sin "_o (') " sinG) + cos _o (I - cos 0) ] + 0(¢t2).

Using equation (37) it follows that

3
(42) I" = 0 + (_ [ sin _o (2 _]2 + 4 cos 0 - 4) + 2 cos '_o ( =3- sin 0) ]

Since (ds) 2 = (d p)

by equation (41)

(43)

2)+0(= •

2 + p2 (d8)2 , we can write ds = /3dO + 0(0_ 2) so that

s = 0 +C_[sin '_o ( 02 + 2 cos 0 - 2) + cos "_o ( _" sin O) ] + O(C_2).

In general, the basic solution to equations (i) and (2) can be written in any

of the two explicit forms.

(44) /3 = ,o (0), T=T(0)

(45) /3 = p ('r), 0 = 0(T)

We have already silown that equations (41) and (42) take the form of (44).

equations (41) and (42) we obtain the form (45), namely,

From

(46) p = I +co[2 sin _b° (T-sinT) + cOS _O (l - cos T)] + 0(C_ 2)
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(47) 0 =T-6 [sin _[_ (3_ T2 + 4 cosT- 4) + 2 cos _J (r- sin T) ] + 0 ( 6 2).
o

Other relations involving s are

(s 2 °= + 9 cos s - 2) + cos _ (s - sin s) ] + 0(62),(48) 0 s -6 [sin 7k° . o

(49)
9

p = I +6 [2 sin _o (s - sin s) + cos 40 (l - cos s) ] + 0(6-),

1 9
(50) "F = s +6 [ sin @o (3 s" + 2 cos s - 2) + cos :# (s - sin s) ] 4 O(6"2).

We will now develop second-order expressions in the two explicit forms as noted

by (44) and (45). From our earlier first-order results we obtain the following

expressions:

u = I -C_[2 sin "_o (0. sin 0) + cos "_o (I - cos6_)] + 0(6 2)

du
d'--O -- 6 [ - 2 sin _r ° (1 - cos O) - cos _)o sin G ] -t 0 ( 0t 2)

p = I + 6 [ 2 sin _o ( 0- sin 0) + cos _o (I - cos g_)]

as o
- +0(6-)

du

+ 0 ( 6 2)

dT
d-'e= i + _ [ sin @o (30 - 4 sin e) + 2 cos '_o (i - cos 0)] + 0_ 62 )

v ,, 1 - c_ [ sin _o (0" 2 sin G) + cos _o (1 - cos_)')] + O_ cc2)

=v+0(2).

Upon substituting these expressions into equation (38) and integrating and

evaluating the constants of integration, A and B, according to the initial

conditions we have
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(51) u = I +_ [cos _ (cose- I) 2 s_n _'o (0- sin0)]
o

+ 0L- [sin- _#o (- '2t_ _
70 sin0- 18 cos 0+ 18)

o

+ COS - _
O

(0sin 0 + 2 cos_- 2)

II 27
cos ¢ (- 80- _ Ocos 0 ++ sin _o o 2

sin 0", ] + 0 (C_3)

Since (I +Ctx +ct2y) -I = I -¢tx 4- 0_2 (x2 - y) +0 ( ¢t3) we ca, write equation

(51) as

(52) p= i +Ct [cos _o (I - cos0) + 2 sin _o (d - sin _)]

2 9 9 9

+ Ct [sin" _o (60- + 4 sin-0-0sin0+ 18 cos 0- 18)

2 2
+ cos _o (cos 0- 0 sin 0 4 cos 0+ 3)

3 19
+ sin _o cos _o (12 0+ _ 0 cos0 -

sin 0+ 4 sin 0cose ]+ 0 (3).

Upon substituting equation (47) into equation (52) we obtain p in terms of

T , nmaely,

(53) p = 1 + Or[cos _o(i - cos T) + 2 sin _o (T- sinT) ]

+ 0L2 [sin 2 _o (3 T 2 + 3T 2 cosT+ 5 cos-T9 + 6 cosT+ 2TsinT- II)

ii 3
+ sin _o cos _o (8T+ -_ T cost- _

T 2 sin T - 19 sin T
2

- 4 sinTcos T) + sin2T- 3TsinT_ 4 COST + 4]+ 0(3).
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Weobtain T in tetqnsof 0 from equation (37)

(54) r = 0+a[2 cos ,; _ 3 2:'o (0- sin _) + sin (-_ <'
O .

4-4 cos 0 - 4) ]

._ 7 - 3+ _- [ sin 2 :.,o (j + 24 sin :)+ 6 :cos _q- 6 sin!) cosO - 24 '))

2
+ COS 3 ,_ 17 ,5 )/o (2 '-cos 0- 12 sin )+ _ sin ucosJ+ -_-

s i.n _ cos+
O

:o (_:_ 02 -- _ 3)• + 37 eosO-+iJsin_- 6 co,_2a - 31)] +0 (c_
O -- o

From equation (54) and usiug equation (47) we obt:_in 9 in terms of T

., 3 2 -._ (r_ s in'r) ](55) O = 'F+ $t [sin /o (- 7__ T - 4 cos !- + 4) ° cos _//o

'_ 2 r 3+ a" [¢i.u _/o ( -8 sini+ 6Tcos'r- 6T 2 sinr- 10 sin Tcosr+ 12T)

2 5 9
+ cos !0° (8 sin r- 6r cos T + _ sin rCOST- X r)

5 2
+ sin Pc eo._ _"o (" Y r

• 2 2
- 21 cosT- 15 TsinT- 10 cos T- 3- Cos T+31)]

+ 0 ( c_3)

We now have enough infor.aation awtilable to obtain energy and momentum expressions.

Using cqnations (31), (3:?), and (33) we hnv,_

1
(57) E = - __ +C_Tsin _*o

2 I 2
+ Ct-[ sin _'o (" "_ 7 - cosT+ 1) + sin ,r, cos 01, (T- sin r_0 _"0 "

+ 8 sin r cos'r) - cOST+ 1] + 0( a 3)

T2
(58) h = 1 +CtTsin _Po + a2 [ sin" _#o ( + 2 cosT- 2)+ sin _o cos "_o (_-" SinT) ]

+0( a 3)

The previously developed equations constitute second-order solutions to equations

(I) and (2) for 0<(Z< I, :_o a constant, and C_, T, and s not too large.
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ORBIT TRAUSFER PROBLEMS

The above theory rmly be applied almost directly to the problem

of transfer fr_a one circular orbit to another. For transfers involving

an initial thrusting phase on departure from a circular orbit £ollowed by

a coasting phase and a subsequent thrusting phase to establish the final

circular orbit, it is only necessary to choose the thrusting angles and

thrust durations so tlmt the energy and momentum values at the beglnt%Ing

and end of the coasting phase are identical. Figure 2 illustrates a

sample transfer.

F Final Thrusting Phase

/

FIGURE 2

/F
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The final boundary eo,lditiotl of the secol_d thrusting phase may be satisfiL_d

by interpreting it as an initial condition and then considering tile motiotl

in negative timid. Because the various L.quations were _lon-dimensionaliz¢,d

with regard to the initial orbit, it is necessary to examine the conw, rsi_,n

factors between quantities measured ill the _)i= i ._ystcm a_,d the p f = i

Pf

system. DL,_loting the p f.quantities by primes, and definL.g K = "P. the
L

conversioll factors arc.:

(Pi = I qt,antity) x co,,v, factor = (pf = i quaI_tity)

E K E'

h K -_ h'

0_ K 2 0c'
3

_ I

2
T K "1"'

-I
length K length'

When these conversion factors are utilized, the non-dimensional equatio.s

are sufficie.t to define the transfer maneuver.
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CORRECTIONS TO PROGRESS REPORT NO. 4

"APPLICATION OF THE TWO FIXED CENTER PROBLEM

TO LUNAR TRAJECTORIES "

By

Mary Payne

The conclusions reached from the old data were slightly

different from those based on the newer data. The corrected

conclusions are to be found on the first page of these

corrections. This page corrects the conclusions found on

pages 236 and 237 in Progress Report No. 4.

The data presented on pages 248 and 249, Tables II and

iii, in Progress Report No. 4 are to be replaced by the

tables presented here.
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The conclusions on the relative merits of the various methods are to be

revised as follows:

A and C are best for long range on bhe return leg

B and C have a slight superiority for midcourse

D is best in moonreference, on the first leg and for short range
on the return leg.

E and F are inferior almost everywhere

It maybe noted that the deviations in moonreference are approximately

I00 times as large as for corresponding deviations in earth reference.

This is perhaps to be expected since the ratio of earth to moonmass

is 80, and hence the terms neglected in moonreference should be

approximately 80 times as large as those neglected in earth reference.
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